Biodegradation

, Volume 22, Issue 4, pp 815–822 | Cite as

Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate

  • Priscila Vaz de Arruda
  • Rita de Cássia Lacerda Brambilla Rodrigues
  • Débora Danielle Virgínio da Silva
  • Maria das Graças de Almeida Felipe
Original Paper

Abstract

The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl−1 xylose, 30.0 gl−1 glucose and in both sugars mixture (30.0 gl−1 xylose and 2.0 gl−1 glucose). The vacuum evaporated hydrolysate (80 gl−1) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite®). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30°C. The maximum XR (0.618 Umg Prot −1 ) and XDH (0.783 Umg Prot −1 ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl−1) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.

Keywords

Sugarcane bagasse Hemicellulosic hydrolysate Xylose reductase Xylitol dehydrogenase Xylitol 

Notes

Acknowledgments

The work was financially supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

  1. Alexander NJ (1985) Temperature sensitivity of the induction of xylose reductase in Pachysolen tannophilus. Biotechnol Bioeng 27:1739–1744PubMedCrossRefGoogle Scholar
  2. Alves LA, Felipe MGA, Almeida e Silva JB, Silva SS, Prata AMR (1998) Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 70–72:89–98. doi: 10.1007/BF02920126 CrossRefGoogle Scholar
  3. Alves LA, Vitolo M, Felipe MGA et al (2002) Xylose reductase and xylitol dehydrogenase activities of Candida guilliermondii as a function of different treatments of sugarcane bagasse hemicellulosic hydrolysate employing experimental design. Appl Biochem Biotechnol 98:403–413PubMedCrossRefGoogle Scholar
  4. Arruda PV, Felipe MGA (2009) Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol 58:274–278. doi: 10.1007/s00284-008-9321-7 PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Canilha L, Carvalho W, Felipe MGA, Almeida e Silva JB (2008) Xylitol production from wheat straw hemicellulosic hydrolysate: Hydrolysate detoxification and carbon source used for inoculum preparation. Braz J Microbiol 39:333–336CrossRefGoogle Scholar
  7. Canilha L, Carvalho W, Felipe MGA, Almeida e Silva JB, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92. doi: 10.1007/s12010-009-8792-8 PubMedCrossRefGoogle Scholar
  8. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950. doi: 10.1016/j.biortech.2006.07.047 PubMedCrossRefGoogle Scholar
  9. Felipe MGA (2004) Biotechnological production of xylitol from lignocellulosic materials. Lignocellulose Biodegradation American Chemical Society pp 300–315. doi: 10.1021/bk-2004-0889.ch018
  10. Felipe MGA, Vieira DC, Vitolo M, Silva SS, Roberto IC, Mancilha IM (1995) Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii. J Basic Microb 35:171–177. doi: 10.1002/jobm.3620350309 CrossRefGoogle Scholar
  11. Gurpilhares DB, Hasmann FA, Pessoa A Jr, Roberto IC (2009) The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 36:87–93. doi: 10.1007/s10295-008-0475-x PubMedCrossRefGoogle Scholar
  12. Hyvonen L, Koivistoinen P, Voirol F (1982) Food tecnological evaluation of xylitol. Adv Food Res 27:373–403Google Scholar
  13. Kastner JR, Eitman MA, Sarah AL (2001) Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnol Lett 23:1663–1667CrossRefGoogle Scholar
  14. Lee H, Sopher CR, Yau YF (1996) Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilliermondii. J Chem Technol Biotechnol 65(4):375–379CrossRefGoogle Scholar
  15. Lucas C, van Uden N (1986) Transport of hemicelluloses monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495CrossRefGoogle Scholar
  16. Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Toivanen J, Söderling E (2001) Comparison of erythritol and xylitol saliva stimulants in the control of dental plaque and Mutans streptococci. Caries Res 35(2):129–135PubMedCrossRefGoogle Scholar
  17. Manz V, Vanninen E, Voirol F (1973) Xylitol—its properties and use as a sugar substitutes in foods. In: Food R.A. Symp. Sugar and Sugar ReplacementsGoogle Scholar
  18. Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293PubMedCrossRefGoogle Scholar
  19. Marton JM, Felipe MGA, Alemida e Silva JB, Pessoa Júnior A (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Braz J Chem Eng 23(1):9–21. doi: 10.1590/S0104-66322006000100002 CrossRefGoogle Scholar
  20. Matilla PT, Knuuttila MLE, Svanberg MJ (1998) Dietary xylitol supplementation prevents osteoporotic changes in streptozotocin-diabetic rats. Metabolism 47:578–583CrossRefGoogle Scholar
  21. Morita TA, Silva SS, Felipe MGA (2000) Effects of initial pH on biological synthesis of xylitol using xylose-rich hydrolysate. Appl Biochem Biotechnol 84–86:751–759PubMedCrossRefGoogle Scholar
  22. Pessoa Júnior A, Mancilha IM, Sato S (1997) Acid hydrolysis of hemicellulose from sugarcane bagasse. Braz J Chem Eng. doi:  10.1590/S0104-66321997000300013
  23. Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM (1996) Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl Biochem Biotechnol 57–58:423–430PubMedCrossRefGoogle Scholar
  24. Rodrigues RCLB, Felipe MGA, Almeida e Silva JB, Vitolo M, Gómez PV (2001) The influence of pH, temperature and hydrolysate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation. Braz J Chem Eng 18:299–311. doi: 10.1590/S0104-66322001000300009 CrossRefGoogle Scholar
  25. Rodrigues RCLB, Sene L, Matos GS, Roberto IC, Pessoa A Jr, Felipe MGA (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53:53–59. doi: 10.1007/s00284-005-0242-4 PubMedCrossRefGoogle Scholar
  26. Rosa SMA, Felipe MGA, Silva SS, Vitolo M (1998) Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol 70–72:127–135. doi: 10.1007/BF02920130 CrossRefGoogle Scholar
  27. Sarrouh BF, Branco RF, Silva SS (2009) Biotechnological production of xylitol: Enhancement of monosaccharide production by post-hydrolysis of dilute acid sugarcane hydrolysate. Appl Biochem Biotechnol 153:163–170. doi: 10.1007/s12010-009-8548-5 PubMedCrossRefGoogle Scholar
  28. Sene L, Felipe MGA, Vitolo M, Silva SS, Mancilha IM (1998) Adaptation and reutilization of Candida guilliermondii cells for xylitol production in bagasse hydrolysate. J Basic Microb 38(1):61–69CrossRefGoogle Scholar
  29. Sene L, Vitolo M, Felipe MGA, Silva SS (2000) Effect of environmental conditions on xylose reductase and xylitol dehydriogenase production in Candida guilliermondii. Appl Biochem Biotechnol 84–86:371–380PubMedCrossRefGoogle Scholar
  30. Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81(7):1294–1300. doi: 10.1002/jctb.1570 CrossRefGoogle Scholar
  31. Silva DDV, Felipe MGA, Mancilha IM, Silva SS (2005) Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol dehydrogenase activities and xylitol production during batch fermentation of sugarcane bagasse hydrolysate. Appl Biochem Biotechnol 121:427–437. doi: 10.1385/ABAB:121:1-3:0427 PubMedCrossRefGoogle Scholar
  32. Silva DDV, Mancilha IM, Silva SS, Felipe MGA (2007) Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Braz Arch Biol Technol 50(2):207–215. doi: 10.1590/S1516-89132007000200005 CrossRefGoogle Scholar
  33. Sreenivas Rao RS, Pavana Jyothi Ch, Prakasham RS, Sarma PN, Venkateswar Rao L (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technolol 97:1974–1978. doi: 10.1016/j.biortech.2005.08.015 CrossRefGoogle Scholar
  34. Sugai JK, Delgenes JP (1995) Catabolite repression of inductin fo aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii. Current Microbiol 31:239–244PubMedCrossRefGoogle Scholar
  35. Uhari M, Kontiokari T, Niemela MA (1998) Use of xylitol sugar in preventing acute otitis media. Pediatrics 102:879–884PubMedCrossRefGoogle Scholar
  36. van Eyes J, Wang Y, Chan S, Tanphaichitir S, King SM (1974) Xylitol as a therapeutic agent in glucose-6-phosphate dehydrogenase deficiency. In: Sipple HL, McNutt KW (eds) Sugars in nutrition. Academic Press, New York, p 613Google Scholar
  37. Villarreal MLM, Prata AMR, Felipe MGA, Almeida e Silva JB (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzym Microbiol Technol 40(1):17–24. doi: 10.1016/j.enzmictec.2005.10.032 CrossRefGoogle Scholar
  38. Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76(3):213–220PubMedCrossRefGoogle Scholar
  39. Zabner J, Seiler MP, Launspach JL, Karp PH, Kearney WR, Look DC et al (2000) The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc Natl Acad Sci USA 97(21):11614–11619PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Priscila Vaz de Arruda
    • 1
  • Rita de Cássia Lacerda Brambilla Rodrigues
    • 1
  • Débora Danielle Virgínio da Silva
    • 1
  • Maria das Graças de Almeida Felipe
    • 1
  1. 1.Departamento de BiotecnologiaUniversidade de São PauloLorenaBrazil

Personalised recommendations