Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry

  • 283 Accesses

  • 5 Citations

Abstract

Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline–saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5–10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O2 g protein −1  min−1, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day−1, productivity of 433.4 mgprotein l−1 day−1 and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline–alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline–saline conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acinas SG, Anto NJ, Rodriguez-Valera F (1999) Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522

  2. Alazard D, Badillo C, Fardeau M, Cayol J, Thomas P, Roldan T, Tholozan J, Ollivier B (2007) Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico. Extremophiles 11:33–39

  3. Alcántara S, Velasco A, Muñoz A, Cid J, Revah S, Razo-Flores E (2004) Hydrogen sulfide oxidation by a microbial consortium in recirculation reactor system: sulfur formation under oxygen limitation and removal of phenols. Environ Sci Technol 38:918–923

  4. Alcocer J, Hammer UT (1999) Saline lake ecosystems of Mexico. Aquat Ecosyst Health Manag 1:291–315

  5. Arahal DR, Ludwig W, Schleifer KH, Ventosa A (2002) Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249

  6. Banciu H, Sorokin D, Galinski E, Muyzer G, Kleerebezem R, Kuenen G (2004) Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334

  7. Banciu H, Sorokin D, Tourova T, Galinski E, Muntyan M, Kuenen J, Muyzer G (2008) Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles 12:391–404

  8. Bárcenas AP, Tijerina ChL, Martínez GA, Becerril RE, Laqué SA, Colinas LMT (2002) Respuesta de tres materiales del género hylocereus a la salinidad sulfático-clorhídrica. Terra Latinoam 20:123–127

  9. Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ (1996) Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19:158–167

  10. Bosch P, Beusekom O, Buisman C, Janssen A (2007) Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 97:1053–1063

  11. Buisman C, Post R, Ijspeert P, Geraats G, Lettinga G (1989) Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnol 9:255–267

  12. Carey TR, Hermes JE, Rochelle GT (1991) A model of acid gas absorption/stripping using methyldiethanolamine with added acid. Gas Sep Purif 5:95–109

  13. Cline C, Hoksberg R, Abry R, Janssen A (2003) Biological process for H2S removal from gas streams. The Shell-Paques/Thiopaq gas desulfurization process. Norman, Oklahoma

  14. de Souza MP, Amini A, Dojka MA, Pickering IJ, Dawson SC, Pace NR, Terry N (2001) Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Appl Environ Microbiol 67:3785–3794

  15. Fernández LC, Rojas ANG, Roldán CTG, Ramírez IME, Zegarra MHG, Uribe HR, Reyes, ARJ, Flores HD, Arce OJM (2006) Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. SEMARNAT, INE, IMP, México. ISBN 968-489-039-7

  16. Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci USA 100:6308–6312

  17. Gonzalez-Sanchez A, Revah S (2007) The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium. Enzym Microb Technol 40:292–298

  18. Gonzalez-Sanchez A, Revah S (2009) Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor. Water Sci Technol 59:1415–1421

  19. Gonzalez-Sanchez A, Revah S, Deshusses A (2008) Alkaline biofiltration of H2S odors. Environ Sci Technol 42:7398–7404

  20. Gonzalez-Sanchez A, Tomas A, Dorado A, Gamisans X, Guisasola A, Lafuente J, Gabriel D (2009) Development of kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques. Water Sci Technol 59:1323–1329

  21. Han K, Levenspiel O (1988) Extended monod kinetics for substrate product and cell inhibition. Biotechnol Bioeng 32:430–437

  22. Jan-Roblero J, Magos X, Fernández L, Hernández-Rodríguez C, Le Borgne S (2004) Phylogenetic analysis of bacterial populations in waters of the former Texcoco Lake, Mexico. Can J Microbiol 50:1049–1059

  23. Janssen A, Sleyster R, Van der Kaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47:327–333

  24. Janssen A, Ruitenberg R, Buisman C (2001) Industrial applications of new sulfur biotechnology. Water Sci Technol 44:85–90

  25. Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87:2264–2268

  26. Kohl A, Nielsen RB (1997) Gas purification. Gulf Pub. Co., Houston

  27. Lens P, Hulshoff P (2000) Environmental technologies to treat sulfur pollution: principes and engineering. International Water Association, London

  28. Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

  29. Okamoto T, Maruyama A, Imura S, Takeyama H, Naganuma T (2004) Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16S rRNA, gyrB and ectBC gene sequences. Syst Appl Microbiol 27:323–333

  30. Olmos A, Olguín P, Fajardo C, Razo E, Monroy O (2004) Physicochemical characterization of spent caustic from the OXIMER process and sour waters from Mexican oil refineries. Energy Fuels 18:302–304

  31. Pirt JS (1975) Principles of microbe and cell cultivation. Blackwell Scientific, Oxford

  32. Ramírez M, Gómez J, Cantero D (2009) Removal of hydrogen sulfide and ammonia from gas mixtures by co-immobilized cell using a new configuration of two biotrickling filters. Water Sci Technol 59:1353–1359

  33. Ramos-Bello R, Cajuste LJ, Flores-Román D, García-Calderón NE (2001) Metales pesados, sales y sodio de chinampa en México. Agrociencia 35(4):385–395

  34. Rodriguez-Valera F (1993) Introduction to saline environments. In: Vreeland RH, Hochtein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 1–24

  35. Schmidt M, Priemé A, Stougaard P (2006) Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles 10(6):551–562

  36. Shapovalova A, Khijniak T, Tourova T, Muyzer G, Sorokin D (2008) Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles 12:619–625

  37. Sievert SM, Heidorn T, Kuever J (2000) Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol 50:1229–1237

  38. Sorokin D, Kuenen G (2005) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702

  39. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580

  40. Sorokin D, Banciu H, van Loosdrecht M, Kuenen J (2003) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic sulfur-oxidizing bacteria from soda lakes. Extremophiles 7:195–203

  41. Sorokin D, Tourova T, Lysenko A, Muyzer G (2006a) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023

  42. Sorokin D, Tourova T, Tatjana V, Kolganova T, Spiridonova E, Berg I, Muyzer G (2006b) Thiomicrospira halophila sp. nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380

  43. Sorokin Y, Foti M, Pinkart H, Muyzer G (2007) Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl Environ Microbiol 73:451–455

  44. Sorokin D, van den Bosch P, Abbas B, Janssen A, Muyzer G (2008) Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 80:965–975

  45. Valenzuela-Encinas C, Neria-González I, Alcantara-Hernández RJ, Estrada-Alvarado I, Zavala-Díaz J, Dendooven L, Marsch R (2009) Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 13:609–621

  46. Velasco A, Alcántara S, Razo-Flores E, Revah S (2004) Partial thiosulfate oxidation by steady-state continuos culture in a bioreactor-settler system. J Chem Technol Biotechnol 79:132–139

Download references

Acknowledgements

The Instituto Mexicano del Petróleo supported this research with D.00011 and D.00344 projects.

Author information

Correspondence to P. Olguín-Lora.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olguín-Lora, P., Le Borgne, S., Castorena-Cortés, G. et al. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry. Biodegradation 22, 83–93 (2011). https://doi.org/10.1007/s10532-010-9378-4

Download citation

Keywords

  • Haloalkaliphilic bacteria
  • Sulfur-oxidizing
  • RISA
  • Thioalkalibacterium
  • Thioalkalivibrio