, Volume 22, Issue 1, pp 71–81 | Cite as

Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing

  • Shuguang Xie
  • Weimin Sun
  • Chunling Luo
  • Alison M. Cupples
Original Paper


The remediation of benzene contaminated groundwater often involves biodegradation and although the mechanisms of aerobic benzene biodegradation in laboratory cultures have been well studied, less is known about the microorganisms responsible for benzene degradation in mixed culture samples or at contaminated sites. To address this knowledge gap, DNA based stable isotope probing (SIP) was utilized to identify active benzene degraders in microcosms constructed with soil from three sources (a contaminated site and two agricultural sites). For this, replicate microcosms were amended with either labeled (13C) or unlabeled benzene and the extracted DNA samples were ultracentrifuged, fractioned and subject to terminal restriction fragment length polymorphism (TRFLP). The dominant benzene degraders (responsible for 13C uptake) were determined by comparing relative abundance of TRFLP phylotypes in heavy fractions of labeled benzene (13C) amended samples to the controls (from unlabeled benzene amended samples). Two phylotypes (a Polaromonas sp. and an Acidobacterium) were the major benzene degraders in the microcosms constructed from the contaminated site soil, whereas one phylotype incorporated the majority of the benzene-derived 13C in each of the agricultural soils (“candidate” phylum TM7 and an unclassified Sphingomonadaceae).


Stable isotope probing Benzene TM7 Polaromonas Acidobacterium Sphingomonadaceae 


  1. Aburto A, Fahy A, Coulon F, Lethbridge G, Timmis KN, Ball AS, McGenity TJ (2009) Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater. J Appl Microbiol 106:317–328CrossRefPubMedGoogle Scholar
  2. Alagappan G, Cowan R (2003) Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirometric data for strongly inhibited cultures. Biotechnol Bioeng 83:798–809CrossRefPubMedGoogle Scholar
  3. Alfreider A, Vogt C (2007) Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water Air Soil Pollut 183:415–426CrossRefGoogle Scholar
  4. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC, Ringelberg DB, Chandler DP, Romine MF, Kennedy DW, Spadoni CM (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201CrossRefPubMedGoogle Scholar
  5. Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobactetia phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116CrossRefPubMedGoogle Scholar
  6. Bertoni G, Bolognese F, Galli E, Barbieri P (1996) Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl Environ Microbiol 62:3704–3711PubMedGoogle Scholar
  7. Branco R, Chung AP, Verissimo A, Morais PV (2005) Impact of chromium-contaminated wastewaters on the microbial community of a river. FEMS Microbiol Ecol 54:35–46CrossRefPubMedGoogle Scholar
  8. Cavalca L, Dell’Amico E, Andreoni V (2004) Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64:576–587CrossRefPubMedGoogle Scholar
  9. Chan OC, Yang XD, Fu Y, Feng ZL, Sha LQ, Casper P, Zou XM (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 58:247–259CrossRefPubMedGoogle Scholar
  10. Cho E, Galera MM, Lorenzana A, Chung WJ (2009) Ethylbenzene, o-xylene, and BTEX removal by Sphingomonas sp. D3K1 in rock wool-compost biofilters. Environ Eng Sci 26:45–52CrossRefGoogle Scholar
  11. Clement BG, Kehl LE, DeBord KL, Kitts CL (1998) Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J Microbiol Methods 31:135–142CrossRefGoogle Scholar
  12. Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622CrossRefPubMedGoogle Scholar
  13. Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microbiol 68:2726–2730CrossRefPubMedGoogle Scholar
  14. Crocetti GR, Banfield JF, Keller J, Bond PL, Blackall LL (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology-SGM 148:3353–3364Google Scholar
  15. Cupples AM, Sims GK (2007) Identification of in situ 2,4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biol Biochem 39:232–238CrossRefGoogle Scholar
  16. Deeb RA, Alvarez-Cohen L (1999) Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioeng 62:526–536CrossRefPubMedGoogle Scholar
  17. DeRito CM, Pumphrey GM, Madsen EL (2005) Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol 71:7858–7865CrossRefPubMedGoogle Scholar
  18. Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669PubMedGoogle Scholar
  19. Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Teniglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717CrossRefPubMedGoogle Scholar
  20. Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270CrossRefPubMedGoogle Scholar
  21. Fahy A, Ball AS, Lethbridge G, McGenity TJ, Timmis KN (2008a) High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol Ecol 65:526–533CrossRefPubMedGoogle Scholar
  22. Fahy A, Ball AS, Lethbridge G, Timmis KN, McGenity TJ (2008b) Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol 47:60–66CrossRefPubMedGoogle Scholar
  23. Fukunaga Y, Kurahashi M, Yanagi K, Yokota A, Harayama S (2008) Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int J Syst Evol Microbiol 58:2597–2601CrossRefPubMedGoogle Scholar
  24. Greene EA, Kay JG, Jaber K, Stehmeier LG, Voordouw G (2000) Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl Environ Microbiol 66:5282–5289CrossRefPubMedGoogle Scholar
  25. Hendrickx B, Dejonghe W, Boenne W, Brennerova M, Cernik M, Lederer T, Bucheli-Witschel M, Bastiaens L, Verstraete W, Top EM, Diels L, Springael D (2005) Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl Environ Microbiol 71:3815–3825CrossRefPubMedGoogle Scholar
  26. Hendrickx B, Junca H, Vosahlova J, Lindner A, Ruegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Schlomann M, Brennerova M, Brenner V, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 64:250–265CrossRefPubMedGoogle Scholar
  27. Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12:401–411CrossRefPubMedGoogle Scholar
  28. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity (vol 180, 4765 pp, 1998). J Bacteriol 180:6793Google Scholar
  29. Irgens RL, Gosink JJ, Staley JT (1996) Polaromonas vacuolata gen nov, sp. nov, a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826CrossRefPubMedGoogle Scholar
  30. Irie S, Doi S, Yorifuji T, Takagi M, Yano K (1987) Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol 169:5174–5179PubMedGoogle Scholar
  31. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728CrossRefPubMedGoogle Scholar
  32. Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100:13591–13596CrossRefPubMedGoogle Scholar
  33. Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97CrossRefPubMedGoogle Scholar
  34. Johnson GR, Olsen RH (1997) Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl Environ Microbiol 63:4047–4052PubMedGoogle Scholar
  35. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215CrossRefPubMedGoogle Scholar
  36. Jung IG, Park CH (2004) Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. J Biosci Bioeng 97:429–431PubMedGoogle Scholar
  37. Kampfer P, Busse HJ, Falsen E (2006) Polaromonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 56:605–608CrossRefPubMedGoogle Scholar
  38. Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72:3586–3592CrossRefPubMedGoogle Scholar
  39. Kim JM, Jeon CO (2009) Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Curr Microbiol 58:70–75CrossRefPubMedGoogle Scholar
  40. Kim DJ, Choi JW, Choi NC, Mahendran B, Lee CE (2005) Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Appl Microbiol Biotechnol 69:456–462CrossRefPubMedGoogle Scholar
  41. Kim JM, Le NT, Chung BS, Park JH, Bae JW, Madsen EL, Jeon CO (2008) Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 74:7313–7320CrossRefPubMedGoogle Scholar
  42. Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7CrossRefGoogle Scholar
  43. Kitayama A, Suzuki E, Kawakami Y, Nagamune T (1996) Gene organization and low regiospecificity in aromatic-ring hydroxylation of a benzene monooxygenase of Pseudomonas aeruginosa JI104. J Ferment Bioeng 82:421–425CrossRefGoogle Scholar
  44. Kittelmann S, Friedrich MW (2008a) Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ Microbiol 10:31–46CrossRefPubMedGoogle Scholar
  45. Kittelmann S, Friedrich MW (2008b) Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Environ Microbiol 10:1557–1570CrossRefPubMedGoogle Scholar
  46. Kleinsteuber S, Muller FD, Chatzinotas A, Wendt-Potthoff K, Harms H (2008) Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiol Ecol 63:107–117CrossRefPubMedGoogle Scholar
  47. Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122CrossRefPubMedGoogle Scholar
  48. Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1:643–653CrossRefPubMedGoogle Scholar
  49. Leahy JG, Tracy KD, Eley MH (2003) Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Ecol 43:271–276CrossRefPubMedGoogle Scholar
  50. Lee SH, Ka JO, Cho JC (2008) Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285:263–269CrossRefPubMedGoogle Scholar
  51. Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou JH, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148CrossRefPubMedGoogle Scholar
  52. Liesack W, Bak F, Kreft JU, Stackebrandt E (1994) Holophaga foetida gen.-nov, sp.-nov, a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90PubMedGoogle Scholar
  53. Liou JSC, DeRito CM, Madsen EL (2008) Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ Microbiol 10:1964–1977CrossRefPubMedGoogle Scholar
  54. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedGoogle Scholar
  55. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer KH (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190CrossRefPubMedGoogle Scholar
  56. Luo C, Xie S, Sun W, Li X, Cupples AM (2009) Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl Environ Microbiol 75:4644–4647CrossRefPubMedGoogle Scholar
  57. Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360CrossRefPubMedGoogle Scholar
  58. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373CrossRefPubMedGoogle Scholar
  59. Manefield M, Griffiths RI, Leigh MB, Fisher R, Whiteley AS (2005) Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ Microbiol 7:715–722CrossRefPubMedGoogle Scholar
  60. Manefield M, Griffiths R, McNamara NP, Sleep D, Ostle N, Whiteley A (2007) Insights into the fate of a 13C labelled phenol pulse for stable isotope probing (SIP) experiments. J Microbiol Methods 69:340–344CrossRefPubMedGoogle Scholar
  61. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104:11889–11894CrossRefPubMedGoogle Scholar
  62. Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416CrossRefPubMedGoogle Scholar
  63. Meisinger DB, Zimmermann J, Ludwig W, Schleifer KH, Wanner G, Schmid M, Bennett PC, Engel AS, Lee NM (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9:1523–1534CrossRefPubMedGoogle Scholar
  64. Mendez MO, Neilson JW, Maier RM (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74:3899–3907CrossRefPubMedGoogle Scholar
  65. Mu DY, Scow KM (1994) Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl Environ Microbiol 60:2661–2665PubMedGoogle Scholar
  66. Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 71:329–343CrossRefGoogle Scholar
  67. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382CrossRefPubMedGoogle Scholar
  68. Oka AR, Phelps CD, McGuinness LM, Mumford A, Young LY, Kerkhof LJ (2008) Identification of critical members in a sulfidogenic benzene-degrading consortium by DNA stable isotope probing. Appl Environ Microbiol 74:6476–6480CrossRefPubMedGoogle Scholar
  69. Olsen RH, Kukor JJ, Kaphammer B (1994) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol 176:3749–3756PubMedGoogle Scholar
  70. Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50CrossRefPubMedGoogle Scholar
  71. Park J, Congeevaram S, Ki DW, Tiedje JM (2006) Use of stable isotope probing in selectively isolating target microbial community genomes from environmental samples for enhancing resolution in ecotoxicological assessment. Mol Cell Toxicol 2:11–14Google Scholar
  72. Powell SN, Singleton DR, Aitken MD (2008) Effects of enrichment with salicylate on bacterial selection and PAH mineralization in a microbial community from a bioreactor treating contaminated soil. Environ Sci Technol 42:4099–4105CrossRefPubMedGoogle Scholar
  73. Quaiser A, Lopez-Garcia P, Zivanovic Y, Henn MR, Rodriguez-Valera F, Moreira D (2008) Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton. Environ Microbiol 10:2704–2717CrossRefPubMedGoogle Scholar
  74. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649CrossRefPubMedGoogle Scholar
  75. Radway JC, Santo Domingo JW, Hazen TC, Wilde EW (1998) Evaluation of biodegradation potential of foam embedded Burkholderia cepacia G4. Biotechnol Lett 20:663–666CrossRefGoogle Scholar
  76. Reardon KF, Mosteller DC, Rogers JB, DuTeau NM, Kim KH (2002) Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ Health Perspect 110:1005–1011PubMedGoogle Scholar
  77. Ridgway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl Environ Microbiol 56:3565–3575PubMedGoogle Scholar
  78. Roh H, Yu CP, Fuller ME, Chu KH (2009) Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N stable isotope probing. Environ Sci Technol 43:2505–2511CrossRefPubMedGoogle Scholar
  79. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666CrossRefPubMedGoogle Scholar
  80. Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108:501–507CrossRefPubMedGoogle Scholar
  81. Shi T, Fredrickson JK, Balkwill DL (2001) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol 26:283–289CrossRefPubMedGoogle Scholar
  82. Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, Aitken MD (2005) Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71:1202–1209CrossRefPubMedGoogle Scholar
  83. Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745CrossRefPubMedGoogle Scholar
  84. Singleton DR, Hunt M, Powell SN, Frontera-Suau R, Aitken MD (2007) Stable-isotope probing with multiple growth substrates to determine substrate specificity of uncultivated bacteria. J Microbiol Methods 69:180–187CrossRefPubMedGoogle Scholar
  85. Sizova M, Panikov N (2007) Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogen-oxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57:616–619CrossRefPubMedGoogle Scholar
  86. Stapleton RD, Sayler GS, Boggs JM, Libelo EL, Stauffer T, Macintyre WG (2000) Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ Sci Technol 34:1991–1999CrossRefGoogle Scholar
  87. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755CrossRefPubMedGoogle Scholar
  88. Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811CrossRefPubMedGoogle Scholar
  89. Sun WM, Xie SG, Luo CL, Cupples AM (2010) Direct link between toluene degradation in contaminated-site microcosms and a Polaromonas strain. Appl Environ Microbiol 76:956–959CrossRefPubMedGoogle Scholar
  90. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedGoogle Scholar
  91. Weelink SAB, Tan NCG, ten Broeke H, van den Kieboom C, van Doesburg W, Langenhoff AAM, Gerritse J, Junca H, Stams AJM (2008) Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 74:6672–6681CrossRefPubMedGoogle Scholar
  92. Xie S, Sun W, Luo C, Cupples AM (2010) Diversity of in situ m-xylene degraders in soil microcosms. Water Air Soil Pollut. doi: 10.1007/s11270-010-0326-z Google Scholar
  93. Yeom SH, Yoo YJ (1999) Removal of benzene in a hybrid bioreactor. Process Biochem 34:281–288CrossRefGoogle Scholar
  94. Yeom SH, Lee JH, Yoo YJ (1998) Cometabolic removal of xylene isomers by Alcaligenes xylosoxidans Y234. J Microbiol Biotechnol 8:222–228Google Scholar
  95. Yu CP, Chu KH (2005) A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol 39:9611–9619CrossRefPubMedGoogle Scholar
  96. Zhang L, Xu ZH (2008) Assessing bacterial diversity in soil. J Soils Sediments 8:379–388CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shuguang Xie
    • 1
    • 2
  • Weimin Sun
    • 2
  • Chunling Luo
    • 2
    • 3
  • Alison M. Cupples
    • 2
  1. 1.College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
  2. 2.Department of Civil and Environmental EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Department of Civil and Structural EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations