Advertisement

Biodegradation

, Volume 22, Issue 1, pp 31–41 | Cite as

Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi

  • O. Rubilar
  • G. Tortella
  • M. Cea
  • F. Acevedo
  • M. Bustamante
  • L. Gianfreda
  • M. C. Diez
Original Paper

Abstract

This study provides a first attempt investigation of a serie of studies on the ability of Anthracophyllum discolor, a recently isolated white-rot fungus from forest of southern Chile, for the treatment of soil contaminated with pentachlorophenol (PCP) to future research on potential applications in bioremediation process. Bioremediation of soil contaminated with PCP (250 and 350 mg kg−1 soil) was investigated with A. discolor and compared with the reference strain Phanerochaete chrysosporium. Both strains were incorporated as free and immobilized in wheat grains, a lignocellulosic material previously selected among wheat straw, wheat grains and wood chips through the growth and colonization of A. discolor. Wheat grains showed a higher growth and colonization of A. discolor, increasing the production of manganese peroxidase (MnP) activity. Moreover, the application of white-rot fungi immobilized in wheat grains to the contaminated soil favored the fungus spread. In turn, with both fungal strains and at the two PCP concentrations a high PCP removal (70–85%) occurred as respect to that measured with the fungus as free mycelium (30–45%). Additionally, the use of wheat grains in soil allowed the proliferation of microorganisms PCP decomposers, showing a synergistic effect with A. discolor and P. chrysosporium and increasing the PCP removal in the soil.

Keywords

Soil contamination Wheat grains Immobilized fungi 

Notes

Acknowledgments

The authors would like to thank FONDECYT Project No. 1050614 and 3080013.

References

  1. Borràs E, Blánquez P, Sarrà M, Caminal G, Vicent T (2008) Trametes versicolor pellets production: low-cost medium and scale-up. Biochem Eng J 42:61–66CrossRefGoogle Scholar
  2. Cea M, Seaman JC, Jara AA, Mora ML, Diez MC (2005) Describing chlorophenol sorption on variable-charge soil using the triple-layer model. J Colloid Interf Sci 292:171–178CrossRefGoogle Scholar
  3. Clausen CA (1996) Bacterial associations with decaying wood: a review. Int Biodeter Biodegr 37:101–107CrossRefGoogle Scholar
  4. Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sc Total Environ 322:21–39CrossRefGoogle Scholar
  5. D’Annibale A, Ricci M, Leonardi V, Quarantino D, Mincione E, Petruccioli M (2005) Degradation of aromatic hydrocarbons by white rot fungi in a historically contaminated soil. Biotechnol Bioeng 90:723–731CrossRefPubMedGoogle Scholar
  6. Dorado J, Almendros G, Camarero S, Martinez AT, Vares T, Hatakka A (1999) Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme Microb Tech 25:605–612CrossRefGoogle Scholar
  7. Dzul-Puc JD, Esparza-García F, Barajas-Aceves M, Rodríguez-Vázquez R (2005) Benzo[a]pyrene removal from soil by Phanerochaete chrysosporium grown on sugarcane bagasse and pine sawdust. Chemosphere 58:1–7CrossRefPubMedGoogle Scholar
  8. Feijoo G, Moreira MT, SierraAlvarez R, Field JA, Lema JM (1997) Kraft paste bleaching with ligninolitic fungi. Afinidad 54:321–326Google Scholar
  9. Gao DW, Wen XH, Qian Y (2005) Effect of nitrogen concentration in culture mediums on growth and enzyme production of Phanerochaete chrysosporium. J Environ Sci-China 17:190–193PubMedGoogle Scholar
  10. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354CrossRefGoogle Scholar
  11. Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64:1601–1606PubMedGoogle Scholar
  12. Hofrichter M, Scheibner K, Bublitz F, Schneegass I, Ziegenhagen D, Martens R, Fritsche W (1999) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 53:161–166CrossRefGoogle Scholar
  13. Kotterman MJJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl Environ Microb 64:2853–2858Google Scholar
  14. Lamar RT, Larsen MJ, Kirk TK (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microb 56:3519–3526Google Scholar
  15. Lang E, Gonser A, Zadrazil F (2000) Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp and Dichomitus squalens. J Basic Microb 40:33–39CrossRefGoogle Scholar
  16. Lechner BE, Papinutti VL (2006) Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem 41:594–598CrossRefGoogle Scholar
  17. Lestan D, Lamar RT (1996) Development of fungal inocula for biaugmentation of contaminated soil. Appl Environ Microbiol 62:2045–2052PubMedGoogle Scholar
  18. Lu Y, Yan L, Wang Y, Zhou S, Fu J, Zhang J (2009) Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J Hazard Mater 165:1091–1097CrossRefPubMedGoogle Scholar
  19. McGrath R, Singleton I (2000) Pentachlorophenol transformation in soil: a toxicological assessment. Soil Biol Biochem 32:1311–1314CrossRefGoogle Scholar
  20. Mohammadi A, Nasernejad B (2009) Enzymatic degradation of anthracene by white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse. J Hazard Mater 161:534–537CrossRefPubMedGoogle Scholar
  21. Moredo N, Lorenzo M, Dominguez A, Moldes D, Cameselle C, Sanroman A (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 19:665–669CrossRefGoogle Scholar
  22. Moreira MT, Feijoo G, Sierra Alvarez R, Lema J, Field JA (1997) Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains. J Biotechnol 53:237–251CrossRefGoogle Scholar
  23. Moreira MT, Mielgo I, Feijoo G, Lema JM (2000) Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol Lett 22:1499–1503CrossRefGoogle Scholar
  24. Papinutti L, Mouso N, Forchiassin F (2006) Removal and degradation of the fungicide dyes malachite green aqueous solution using the system wheat bran-Fomes sclerodermus. Enzyme Microb Tech 39:848–853CrossRefGoogle Scholar
  25. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33CrossRefPubMedGoogle Scholar
  26. Radtke C, Cook WS, Anderson A (1994) Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl Microbiol Biot 41:274–280CrossRefGoogle Scholar
  27. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413PubMedGoogle Scholar
  28. Rubilar O, Feijoo G, Diez C, Lu-Chau T, Moreira MT, Lema J (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:6744–6751CrossRefGoogle Scholar
  29. Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Env Sci Tec 38:227–268CrossRefGoogle Scholar
  30. Tortella GR, Durán N, Diez MC (2005) Fungal diversity and use in decomposition of enviromental pollutants. Crit Rev Microbiol 31:197–212CrossRefPubMedGoogle Scholar
  31. Tortella GR, Rubilar O, Gianfreda L, Valenzuela E, Diez MC (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805–2818CrossRefGoogle Scholar
  32. Tse KC, Lo S (2002) Desorption kinetics of PCP-contaminated soil: effect of temperature. Water Res 36:284–290CrossRefPubMedGoogle Scholar
  33. Vernile P, Fornelli F, Bari G, Spagnuolo M, Minervini F, de Lillo E, Ruggiero P (2007) Bioavailability and toxicity of pentachlorophenol in contaminated soil evaluated on coelomocytes of Eisenia andrei (Annelida: Lumbricidae). Toxicol In Vitro 21:302–307CrossRefPubMedGoogle Scholar
  34. Walter M, Boul L, Chong R, Ford C (2004) Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J Environ Manag 71:361–369CrossRefGoogle Scholar
  35. Wiesche C, Martens R, Zadrazil F (1996) Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biot 46:653–659CrossRefGoogle Scholar
  36. Xu FJ, Chen HZ, Li ZH (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • O. Rubilar
    • 1
  • G. Tortella
    • 1
  • M. Cea
    • 1
  • F. Acevedo
    • 1
    • 2
  • M. Bustamante
    • 1
    • 2
  • L. Gianfreda
    • 3
  • M. C. Diez
    • 1
  1. 1.Department of Chemical Engineering, Environmental Biotechnology Center, Scientifical and Technological Bioresource NucleusUniversidad de La FronteraTemucoChile
  2. 2.Programa de Doctorado en Ciencias de Recursos NaturalesUniversidad de La FronteraTemucoChile
  3. 3.Dipartimento di Scienze del Suolo, della Pianta, dell’Ambiente e delle Produzioni AnimaliUniversità di Napoli Federico IIPorticiItaly

Personalised recommendations