Biodegradation

, Volume 21, Issue 6, pp 979–987 | Cite as

Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1

  • Priyanka Sharma
  • Adity Chopra
  • Swaranjit Singh Cameotra
  • C. Raman Suri
Original Paper

Abstract

A Gram-positive, Micrococcus sp. strain PS-1 capable of utilizing phenylurea herbicide diuron as a sole carbon source at a high concentration (up to 250 ppm) was isolated from diuron storage site by selective enrichment study. The taxonomic characterization with 16S rRNA gene sequencing (1,477 bp) identified PS-1 as a member of Micrococcus sp. It was studied for the degradation of diuron and a range of its analogues (monuron, linuron, monolinuron, chlortoluron and fenuron). The shake flasks experiments demonstrated fast degradation of diuron (up to 96% at 250 ppm within 30 h incubation) with the addition of small quantity (0.01%) of non-ionic detergent. The relative degradation profile by the isolate was in the order of fenuron > monuron > diuron > linuron > monolinuron > chlortoluron. Further, the biochemical characterization of catabolic pathway by spectroscopic and chromatographic techniques demonstrated that the degradation proceeded via formation of dealkylated metabolites to form 3,4-dichloroaniline (3,4-DCA). It was the major metabolite formed, associated with profound increase in degradation kinetics in presence of appropriate additive.

Keywords

Micrococcus sp. Degradation Phenylurea herbicides Diuron 3,4-DCA 

Supplementary material

10532_2010_9357_MOESM1_ESM.doc (153 kb)
Supplementary materials (Media preparation and Biochemical analysis of the strain PS-1: ST; detailed analysis of screening of pesticide degrading strain: T1 and: S1 are attached separately. (DOC 153 kb)

References

  1. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon, and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157:2806–2812CrossRefPubMedGoogle Scholar
  2. Bazot S, Bois P, Joyeux C, Lebeau T (2007) Mineralization of diuron [3-(3,4-dichlorophenyl)-1, dimethylurea] by co-immobilized Arthrobacter sp. and Delftia acidovorans. Biotechnol Lett 29:749–754CrossRefPubMedGoogle Scholar
  3. Brown DG, Guha S, Jaffe PR (1999) Surfactant-enhanced biodegradation of a PAH in soil slurry reactors. Bioremediat J 3:269–283CrossRefGoogle Scholar
  4. Burgoyne J, Holmes MC, Tiddy GJT (1995) An extensive mesh phase liquid crystal in aqueous mixtures of a long chain non-ionic surfactant. J Phys Chem 99:6054–6063CrossRefGoogle Scholar
  5. Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686CrossRefGoogle Scholar
  6. Eriksson E, Baun A, Mikkelsen PS, Ledin A (2007) Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å, Denmark. Desalination 215:187–197CrossRefGoogle Scholar
  7. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032CrossRefPubMedGoogle Scholar
  8. Guha S, Jaffe PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32(15):2317–2324CrossRefGoogle Scholar
  9. Holt JG, Krieg RN, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins, BaltimoreGoogle Scholar
  10. Lapworth DJ, Gooddy DC (2006) Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environ Pollut 144(3):1031–1044CrossRefPubMedGoogle Scholar
  11. Louchart X, Voltz M (2007) Aging effects on the availability of herbicides to runoff transfer. Environ Sci Technol 41(4):1137–1144CrossRefPubMedGoogle Scholar
  12. Moncada A (2004) Environmental fate of diuron. In: Department of Pesticide Regulation Report, Sacramento, CAGoogle Scholar
  13. Pang Z, Mahrouki AA, Berezovski M, Krylov SN (2005) Selection of surfactants for cell lysis in chemical cytometry to study protein-DNA interactions. Electrophoresis 27:1489–1494CrossRefGoogle Scholar
  14. Roberts SJ, Walker A, Parekh NR, Welch SJ, Waddington MJ (1993) Studies on a mixed bacterial culture from soil which degrades the herbicide linuron. Pestic Sci 39:71–78CrossRefGoogle Scholar
  15. Roberts SJ, Walker A, Cox L, Welch SJ (1998) Isolation of isoproturon degrading bacteria from treated soil via three different routes. J Appl Microbiol 85:309–316CrossRefPubMedGoogle Scholar
  16. Shelton DR, Khader S, Karns JS, Pogell BM (1996) Metabolism of twelve herbicides by Streptomyces. Biodegrad J 7:129–136CrossRefGoogle Scholar
  17. Singh P, Suri CR, Cameotra SS (2004) Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochem Biophys Res Commun 317(3):697–702CrossRefPubMedGoogle Scholar
  18. Smith JA, Sahoo D, McLellan HM, Imbrigiotta TE (1997) Surfactant enhanced remediation of a trichloroethene contaminated aquifer. 1. Transport of Triton X-100. Environ Sci Technol 31(12):3565–3572CrossRefGoogle Scholar
  19. Sorensen SR, Rasmussen J, Jacobsen CS, Jacobsen OS, Juhler RK, Aamand J (2005) Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation. Appl Environ Microbiol 71(7):4144–4148CrossRefPubMedGoogle Scholar
  20. Sorensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74(8):2332–2340CrossRefPubMedGoogle Scholar
  21. Tixier C, Sancelme M, Bonnmoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381–1389CrossRefPubMedGoogle Scholar
  22. Tixier C, Sancelme M, Ait-Aissa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46(4):519–526CrossRefPubMedGoogle Scholar
  23. Tomlin C (1997) The pesticide manual. British Crop Protection Council EU, FarnhamGoogle Scholar
  24. Travkin V, Solyanikova IP, Rietjens IMCM, Vervoort J, Van Berkel WJH, Golovleva LA (2003) Degradation of 3.4-dichloro- and 3.4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health 38:121–132CrossRefGoogle Scholar
  25. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67(5):2270–2275CrossRefPubMedGoogle Scholar
  26. Wong JWC, Fang M, Zhao Z, Xing B (2004) Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual 33:2015–2025CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Priyanka Sharma
    • 1
  • Adity Chopra
    • 1
  • Swaranjit Singh Cameotra
    • 1
  • C. Raman Suri
    • 1
  1. 1.Institute of Microbial Technology (CSIR)ChandigarhIndia

Personalised recommendations