Biodegradation

, Volume 21, Issue 4, pp 557–564 | Cite as

Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme

  • Yuichiro Iwasaki
  • Hiroaki Gunji
  • Kuniki Kino
  • Takasumi Hattori
  • Yoshitaka Ishii
  • Kohtaro Kirimura
Original Paper

Abstract

A novel metabolic pathway was found in the yeast Trichosporon moniliiforme WU-0401 for salicylate degradation via phenol as the key intermediate. When 20 mM salicylate was used as the sole carbon source for the growth of strain WU-0401, phenol was detected as a distinct metabolite in the culture broth. Analysis of the products derived from salicylate or phenol through reactions with resting cells and a cell-free extract of strain WU-0401 indicated that salicylate is initially decarboxylated to phenol and then oxidized to catechol, followed by aromatic ring cleavage to form cis-cis muconate.

Keywords

Biodegradation Metabolic pathway Phenol Salicylate Trichosporon moniliiforme 

Abbreviations

CoA

Coenzyme A

HPLC

High-performance liquid chromatography

OD

Optical density

TLC

Thin-layer chromatography

HMBC

Hetero-nuclear multiple-bond connectivity

NMR

Nuclear magnetic resonance

References

  1. Adilakshmi T, Ayling PD, Ratledge C (2000) Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J Bacteriol 182:264–271CrossRefPubMedGoogle Scholar
  2. Andersen RA, Hamiltonkemp TR, Loughrin JH, Hughes CG, Hildebrand DF, Sutton TG (1988) Green leaf headspace volatiles from Nicotiana tabacum lines of different trichome morphology. J Agric Food Chem 36:295–299CrossRefGoogle Scholar
  3. Anderson JJ, Dagley S (1980) Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol 141:534–543PubMedGoogle Scholar
  4. Caselli L, Hanau S (1994) Degradation of aromatic compounds by Trichosporon sp. Boll Soc Ital Biol Sper 70:83–88PubMedGoogle Scholar
  5. Chadha KC, Brown SA (1974) Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52:2041–2046CrossRefGoogle Scholar
  6. Civilini M, de Bertoldi M, Tell G (1999) Molecular characterization of Pseudomonas aeruginosa 2NR degrading naphthalene. Lett Appl Microbiol 29:181–186CrossRefPubMedGoogle Scholar
  7. Gaal A, Neujahr HY (1979) Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol 137:13–21PubMedGoogle Scholar
  8. Gaille C, Kast P, Haas D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa: purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J Biol Chem 277:21768–21775CrossRefPubMedGoogle Scholar
  9. Grund E, Denecke B, Eichenlaub R (1992) Naphthalene degradation via salicylate and gentasate by Rhodococcus sp. strain B4. Appl Environ Microbiol 58:1874–1877PubMedGoogle Scholar
  10. Hintner JP, Lechner C, Riegert U, Kuhm AE, Storm T, Reemtsma T, Stolz A (2001) Direct ring fission of salicylate by a salicylate 1, 2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J Bacteriol 183:6936–6942CrossRefPubMedGoogle Scholar
  11. Ishiyama D, Vujaklija D, Davies J (2004) Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl Environ Microbiol 70:1297–1306CrossRefPubMedGoogle Scholar
  12. Jeffreys D (2004) Aspirin: the remarkable story of a wonder drug. Bloomsbury, LondonGoogle Scholar
  13. Klambt HD (1962) Conversion in plants of benzoic acid to salicylic acid and its beta-d-glucoside. Nature 196:491CrossRefGoogle Scholar
  14. Klick S, Herrmann K (1988) Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry 27:2177–2180CrossRefGoogle Scholar
  15. Lee HI, Leon J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079CrossRefPubMedGoogle Scholar
  16. Nair BM, Joachimiak LA, Chattopadhyay S, Montano I, Burns JL (2005) Conservation of a novel protein associated with an antibiotic efflux operon in Burkholderia cenocepacia. FEMS Microbiol Lett 245:337–344CrossRefPubMedGoogle Scholar
  17. Nakagawa H, Kirimura K, Nitta T, Kino K, Kurane R, Usami S (2002) Recycle use of Sphingomonas sp. CDH-7 cells for continuous degradation of carbazole in the presence of MgCl2. Curr Microbiol 44:251–256CrossRefPubMedGoogle Scholar
  18. Pelludat C, Brem D, Heesemann J (2003) Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. J Bacteriol 185:5648–5653CrossRefPubMedGoogle Scholar
  19. Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2000) α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. J Biosci Bioeng 90:625–630CrossRefPubMedGoogle Scholar
  20. Sze IS, Dagley S (1984) Properties of salicylate hydroxylase and hydroxyquinol 1, 2-dioxygenase purified from Trichosporon cutaneum. J Bacteriol 159:353–359PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yuichiro Iwasaki
    • 1
  • Hiroaki Gunji
    • 1
  • Kuniki Kino
    • 1
  • Takasumi Hattori
    • 1
  • Yoshitaka Ishii
    • 1
  • Kohtaro Kirimura
    • 1
  1. 1.Faculty of Science and Engineering, Department of Applied ChemistryWaseda UniversityTokyoJapan

Personalised recommendations