Advertisement

Biodegradation

, Volume 21, Issue 2, pp 193–201 | Cite as

Biodegradation of N,N diethylaniline in a contaminated aquifer: laboratory- and field-scale evidences

  • Andrea Franzetti
  • Isabella Gandolfi
  • Marco Piscitello
  • Giovanni Porto
  • Adriano Biasiolo
  • Francesca Oltolini
  • Tomaso Marangoni
  • Giuseppina Bestetti
Original Paper

Abstract

The effectiveness of biosparging to mitigate N,N diethylaniline in aquifer was evaluated by measuring the time course of decrease in concentration of the aforementioned compound in aerobic microcosm experiments. The first-order kinetic constant for N,N diethylaniline aerobic biodegradation was estimated from microcosm data (0.037 ± 0.004 d−1), and the value was consistent with the best-fitting value in the transport and reaction model of the aquifer (0.020 d−1). Furthermore, the biodegradability of the compound was evaluated under anaerobic condition in microcosm experiments, which was supported by field modelling. There was no significant degradation in the anaerobic microcosm experiments, confirming the recalcitrance of N,N diethyl aniline under the aforementioned aquifer condition.

Keywords

N,N diethylaniline Anilines Aquifer Groundwater Bioremediation Biodegradability 

Notes

Acknowledgments

Authors gratefully acknowledge Barbara Bosio and Eleonora Gaspari for their precious help in microbiological analyses and R&C Lab S.r.l. (Italy) for technical assistance in chemical analyses. This work was partially funded by Consorzio Copernico Scarl (Italy).

References

  1. Bhunia F, Saha NC, Kaviraj A (2003) Effects of aniline-an aromatic amine-to some freshwater organisms. Ecotoxicology 12:397–404CrossRefPubMedGoogle Scholar
  2. Bollag M, Blattmann P, Laanio T (1978) Adsorption and transformation of four substituted anilines in soil. J Agric Food Chem 26:1302–1306CrossRefGoogle Scholar
  3. Bornick H, Eppinger P, Grischek T et al (2001) Simulation of biological degradation of aromatic amines in river bed sediments. Water Res 35:619–624CrossRefPubMedGoogle Scholar
  4. Chappelle FH (2003) Groundwater microbiology and geochemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  5. Chung KT, Kirkovsky L, Kirkovsky A et al (1997) Review of mutagenicity of monocyclic aromatic amines: quantitative structure-activity relationships. Mutat Res 387:1–16CrossRefPubMedGoogle Scholar
  6. Crabtree HC, Hart D, Thomas MC et al (1991) Carcinogenic ranking of aromatic amines and nitro compounds. Mutat Res 264:155–162CrossRefPubMedGoogle Scholar
  7. Foght J (2008) Anaerobic biodegradation of aromatic compounds: pathways, prospects. J Mol Microbiol Biotechnol 15:93–120CrossRefPubMedGoogle Scholar
  8. Gheewala SH, Annachhatre AP (1997) Biodegradation of aniline. Water Sci Technol 36:53–63Google Scholar
  9. Kampfer P, Kroppenstedt RM (2004) Pseudonocardia benzenivorans sp nov. Int J Syst Evol Microbiol 54:749–751CrossRefPubMedGoogle Scholar
  10. Kearney PC, Kaufmann DD (1975) Herbicides: chemistry, degradation and mode of action, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  11. Lyons CD, Katz S, Bartha R (1984) Mechanisms and pathways of aniline elimination from aquatic environment. Appl Environ Microbiol 48:491–496PubMedGoogle Scholar
  12. Lyons CD, Katz S, Bartha R (1985) Persistence and mutagenic potential of herbicide-derived aniline residues in pond water. Bull Environ Contam Toxicol 35:696–703CrossRefPubMedGoogle Scholar
  13. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  14. Mengoni A, Barzanti R, Gonnelli C et al (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698CrossRefPubMedGoogle Scholar
  15. Meyer U (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Hutter R, Cook AM, Neusch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, London, pp 371–385Google Scholar
  16. Niemi GJ, Veith GD, Regal RR et al (1987) Structural features associated with degradable and persistent chemicals. Water Res 35:619–624Google Scholar
  17. Omer CA, Lenstra R, Litle PJ et al (1990) Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J Bacteriol 172:3335–3345PubMedGoogle Scholar
  18. Porto G, Biasiolo A, Brambilla S et al. (2008) Biodegradation of aniline and its derivatives by a biosparging system. In: Proceeding of international conference “Con Soil 2008” 3–6 June 2008, Milano, ItalyGoogle Scholar
  19. Qureshi A, Verma V, Kapley A et al (2007) Degradation of 4-nitroaniline by Stenotrophomonas strain HPC 135. Int Biodeterior Biodegrad 60:215–218CrossRefGoogle Scholar
  20. Resnick SM, Lee K, Gibson DT (1996) Diverse reaction catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. J Ind Microbiol 17:438–457CrossRefGoogle Scholar
  21. Schwieger F, Tebbe CC (1998) A new approach to utilise PCR-single-strand- conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876PubMedGoogle Scholar
  22. Skerrman VBD (1967) A guide to the identification of the genera of bacterial. Williams & Wilkins Eds, BaltimoreGoogle Scholar
  23. Taupp M, Heckel F, Harmsen D et al (2006) Biohydroxylation of N,N-dialkylarylamines by the isolated topsoil bacterium Bacillus megaterium. Enzyme Microb Technol 38:1013–1016CrossRefGoogle Scholar
  24. Tiedje JM et al (1982) Denitrification. In: Page AL (ed) Methods of soil analysis, vol 9. Am Soc. of Agron., Inc, Madison, pp 1011–1025 Part 2, AgronomyGoogle Scholar
  25. Tongarun R, Luepromchai E, Vangnai AS (2008) Natural attenuation, biostimulation, and bioaugmentation in 4-chloroaniline-contaminated soil. Curr Microbiol 56:182–188CrossRefPubMedGoogle Scholar
  26. Travkin VM, Solyanikova IP, Rietjens I et al (2003) Degradation of 3, 4-dichloro- and 3, 4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health Part B-Pestic Contam Agric Wastes 38:121–132Google Scholar
  27. Urata M, Uchida E, Nojiri H et al (2004) Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci Biotechnol Biochem 68:2457–2465CrossRefPubMedGoogle Scholar
  28. Vainberg S, McClay K, Masuda H et al (2006) Biodegradation of ether pollutants by Pseudonocardia sp strain ENV478. Appl Environ Microbiol 72:5218–5224CrossRefPubMedGoogle Scholar
  29. Vazquez-Rodriguez GA, Beltran-Hernandez RI, Lucho-Constantino CA et al (2008) A method for measuring the anoxic biodegradability under denitrifying conditions. Chemosphere 71:1363–1368CrossRefPubMedGoogle Scholar
  30. Wang Q, Garrity GM, Tiedje JM et al (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedGoogle Scholar
  31. Wu YG, Yin DZ, Li YF (2008) Aniline biodegradation in riverbed sediments with low content of organic carbon under denitrification conditions. Res J Chem Environ 12:51–57Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andrea Franzetti
    • 1
  • Isabella Gandolfi
    • 1
  • Marco Piscitello
    • 1
  • Giovanni Porto
    • 2
  • Adriano Biasiolo
    • 2
  • Francesca Oltolini
    • 2
  • Tomaso Marangoni
    • 2
  • Giuseppina Bestetti
    • 1
  1. 1.Department of Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Consorzio Copernico ScarlCinisello Balsamo (Milano)Italy

Personalised recommendations