, Volume 19, Issue 6, pp 859–881 | Cite as

Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1

  • Seong-Jae Kim
  • Ohgew Kweon
  • Richard C. Jones
  • Ricky D. Edmondson
  • Carl E. CernigliaEmail author
Original Paper


Mycobacterium vanbaalenii PYR-1 is well known for its ability to degrade a wide range of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs). The genome of this bacterium has recently been sequenced, allowing us to gain insights into the molecular basis for the degradation of PAHs. The 6.5 Mb genome of PYR-1 contains 194 chromosomally encoded genes likely associated with degradation of aromatic compounds. The most distinctive feature of the genome is the presence of a 150 kb major catabolic region at positions 494 ~ 643 kb (region A), with an additional 31 kb region at positions 4,711 ~ 4,741 kb (region B), which is predicted to encode most enzymes for the degradation of PAHs. Region A has an atypical mosaic structure made of several gene clusters in which the genes for PAH degradation are complexly arranged and scattered around the clusters. Significant differences in the gene structure and organization as compared to other well-known aromatic hydrocarbon degraders including Pseudomonas and Burkholderia were revealed. Many identified genes were enriched with multiple paralogs showing a remarkable range of diversity, which could contribute to the wide variety of PAHs degraded by M. vanbaalenii PYR-1. The PYR-1 genome also revealed the presence of 28 genes involved in the TCA cycle. Based on the results, we proposed a pathway in which HMW PAHs are degraded into the β-ketoadipate pathway through protocatechuate and then mineralized to CO2 via TCA cycle. We also identified 67 and 23 genes involved in PAH degradation and TCA cycle pathways, respectively, to be expressed as proteins.


Degradation Genomic analysis Mycobacterium vanbaalenii PYR-1 Polycyclic aromatic hydrocarbons Proteome analysis 



Cytochrome P450 monooxygenases




Joint Genome Institute


Kyoto Encyclopedia of Genes and Genomes


Open reading frames


Polycyclic aromatic hydrocarbons


Ring-hydroxylating oxygenases



We thank Robin L. Stingley and Ashraf A. Khan for critical review of the manuscript and Thomas D. Yun for graphical assistance. The authors acknowledge Charles D. Miller and Ronald C. Sims at the Utah State University and the staff of the Joint Genome Institute for their efforts with the genome sequencing of M. vanbaalenii PYR-1. This work was supported by an appointment to the Postgraduate Research Program at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U. S. Department of Energy and the U. S. Food and Drug Administration.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marliere P, Cohen GN, Medigue C (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779PubMedCrossRefGoogle Scholar
  3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  4. Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59:1927–1930PubMedGoogle Scholar
  5. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160PubMedCrossRefGoogle Scholar
  6. Brezna B, Khan AA, Cerniglia CE (2003) Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett 223:177–183PubMedCrossRefGoogle Scholar
  7. Brezna B, Kweon O, Stingley RL, Freeman JP, Khan AA, Polek B, Jones RC, Cerniglia CE (2006) Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 71:522–532PubMedCrossRefGoogle Scholar
  8. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21:3422–3423PubMedCrossRefGoogle Scholar
  9. Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287PubMedCrossRefGoogle Scholar
  10. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544PubMedCrossRefGoogle Scholar
  11. Dos Santos VA, Heim S, Moore ER, Stratz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286PubMedCrossRefGoogle Scholar
  12. Eulberg D, Lakner S, Golovleva LA, Schlömann M (1998) Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity. J Bacteriol 180:1072–1081PubMedGoogle Scholar
  13. Fiorenza S, Ward CH (1997) Microbial adaptation to hydrogen peroxide and biodegradation of aromatic hydrocarbons. J Ind Microbiol Biotechnol 18:140–151PubMedCrossRefGoogle Scholar
  14. Gescher J, Ismail W, Olgeschlager E, Eisenreich W, Worth J, Fuchs G (2006) Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3, 4-dehydroadipyl-CoA semialdehyde dehydrogenase. J Bacteriol 188:2919–2927PubMedCrossRefGoogle Scholar
  15. Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243PubMedCrossRefGoogle Scholar
  16. Gilmartin N, Ryan D, Sherlock O, Dowling D (2003) BphK shows dechlorination activity against 4-chlorobenzoate, an end product of bph-promoted degradation of PCBs. FEMS Microbiol Lett 222:251–255PubMedCrossRefGoogle Scholar
  17. Gonçalves ER, Hara H, Miyazawa D, Davies JE, Eltis LD, Mohn WW (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:6183–6193PubMedCrossRefGoogle Scholar
  18. Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469PubMedGoogle Scholar
  19. Guengerich FP, Wu ZL, Bartleson CJ (2005) Function of human cytochrome P450 s: characterization of the orphans. Biochem Biophys Res Commun 338:465–469PubMedCrossRefGoogle Scholar
  20. Habe H, Chung JS, Ishida A, Kasuga K, Ide K, Takemura T, Nojiri H, Yamane H, Omori T (2005) The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the ß-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. Microbiology 151:3713–3722PubMedCrossRefGoogle Scholar
  21. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243PubMedCrossRefGoogle Scholar
  22. Haggblom MM, Nohynek LJ, Salkinoja-Salonen MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol 54:3043–3052PubMedGoogle Scholar
  23. Hall K, Miller CD, Sorensen DL, Anderson AJ, Sims RC (2005) Development of a catabolically significant genetic probe for polycyclic aromatic hydrocarbon-degrading mycobacteria in soil. Biodegradation 16:475–484PubMedCrossRefGoogle Scholar
  24. Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173:255–263PubMedCrossRefGoogle Scholar
  25. Harayama S, Rekik M, Wasserfallen A, Bairoch A (1987) Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. Mol Gen Genet 210:241–247PubMedCrossRefGoogle Scholar
  26. Harwood CS, Parales RE (1996) The ß-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590PubMedCrossRefGoogle Scholar
  27. Hearn EM, Dennis JJ, Gray MR, Foght JM (2003) Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185:6233–6240PubMedCrossRefGoogle Scholar
  28. Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614PubMedGoogle Scholar
  29. Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973PubMedGoogle Scholar
  30. Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.; identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565PubMedGoogle Scholar
  31. IARC (1983) Monograph on the evaluation of carcinogenic risk of chemicals to man: polynuclear aromatic compounds. Part 1: chemical, environmental and experimental data, vol. 32, World Health Organization. Lyon, FranceGoogle Scholar
  32. Jimenez JI, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841PubMedCrossRefGoogle Scholar
  33. Jouanneau Y, Meyer C, Jakoncic J, Stojanoff V, Gaillard J (2006) Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45:12380–12391PubMedCrossRefGoogle Scholar
  34. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067PubMedCrossRefGoogle Scholar
  35. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357PubMedCrossRefGoogle Scholar
  36. Karlson U, Dwyer DF, Hooper SW, Moore ER, Timmis KN, Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474PubMedGoogle Scholar
  37. Kelley I, Cerniglia CE (1995) Degradation of a mixture of high-molecular-weight polycyclic aromatic hydrocarbons by a Mycobacterium strain, PYR-1. J Soil Contam 4:77–91Google Scholar
  38. Kelley I, Freeman JP, Cerniglia CE (1990) Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation 1:283–290PubMedCrossRefGoogle Scholar
  39. Kelley I, Freeman JP, Evans FE, Cerniglia CE (1991) Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp. Appl Environ Microbiol 57:636–641PubMedGoogle Scholar
  40. Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806PubMedGoogle Scholar
  41. Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585PubMedCrossRefGoogle Scholar
  42. Khan AA, Kim SJ, Paine DD, Cerniglia CE (2002) Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov. Int J Syst Evol Microbiol 52:1997–2002PubMedCrossRefGoogle Scholar
  43. Kim YH, Engesser KH, Cerniglia CE (2003) Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Arch Biochem Biophys 416:209–217PubMedCrossRefGoogle Scholar
  44. Kim SJ, Jones RC, Cha CJ, Kweon O, Edmondson RD, Cerniglia CE (2004a) Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 4:3899–3908PubMedCrossRefGoogle Scholar
  45. Kim YH, Moody JD, Freeman JP, Engesser KH, Cerniglia CE (2004b) Evidence for the existence of PAH-quinone reductase and catechol-O-methyltransferase in Mycobacterium vanbaalenii PYR-1. J Ind Microbiol Biotechnol 31:507–516PubMedCrossRefGoogle Scholar
  46. Kim YH, Engesser KH, Cerniglia CE (2005a) Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microbial Ecol 50:110–119CrossRefGoogle Scholar
  47. Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE (2005b) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67:275–285PubMedCrossRefGoogle Scholar
  48. Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72:1045–1054PubMedCrossRefGoogle Scholar
  49. Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472PubMedCrossRefGoogle Scholar
  50. Kurbatov L, Albrecht D, Herrmann H, Petruschka L (2006) Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ Microbiol 8:466–478PubMedCrossRefGoogle Scholar
  51. Kweon O, Kim SJ, Jones RC, Freeman JP, Adjei MD, Edmondson RD, Cerniglia CE (2007) A polyomic approach to elucidate the fluoranthene degradative pathway in Mycobacterium vanbaalenii PYR-1. J Bacteriol 189:4635–4647PubMedCrossRefGoogle Scholar
  52. Lamb DC, Ikeda H, Nelson DR, Ishikawa J, Skaug T, Jackson C, Omura S, Waterman MR, Kelly SL (2003) Cytochrome P450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 307:610–619PubMedCrossRefGoogle Scholar
  53. Larkin MJ, Allen CC, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181:6200–6204PubMedGoogle Scholar
  54. Lloyd-Jones G, Lau PC (1997) Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Appl Environ Microbiol 63:3286–3290PubMedGoogle Scholar
  55. López Z, Vila J, Grifoll M (2005) Metabolism of fluoranthene by mycobacterial strains isolated by their ability to grow in fluoranthene or pyrene. J Ind Microbiol Biotechnol 32:455–464PubMedCrossRefGoogle Scholar
  56. MacLeod CT, Daugulis AJ (2003) Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Appl Microbiol Biotechnol 62:291–296PubMedCrossRefGoogle Scholar
  57. Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305PubMedCrossRefGoogle Scholar
  58. McLellan SL, Warshawsky D, Shann JR (2002) The effect of polycyclic aromatic hydrocarbons on the degradation of benzo[a]pyrene by Mycobacterium sp. strain RJGII-135. Environ Toxicol Chem 21:253–259PubMedCrossRefGoogle Scholar
  59. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587PubMedCrossRefGoogle Scholar
  60. Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483PubMedCrossRefGoogle Scholar
  61. Moody JD, Fu PP, Freeman JP, Cerniglia CE (2003) Regio- and stereoselective metabolism of 7, 12-dimethylbenz[a]anthracene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 69:3924–3931PubMedCrossRefGoogle Scholar
  62. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345PubMedCrossRefGoogle Scholar
  63. Moody JD, Freeman JP, Cerniglia CE (2005) Degradation of benz[a]anthracene by Mycobacterium vanbaalenii strain PYR-1. Biodegradation 16:513–526PubMedCrossRefGoogle Scholar
  64. Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T (2005) bph Genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology 151:4139–4151PubMedCrossRefGoogle Scholar
  65. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  66. Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol 187:4050–4063PubMedCrossRefGoogle Scholar
  67. Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12:1–18PubMedCrossRefGoogle Scholar
  68. Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T (2003) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357PubMedCrossRefGoogle Scholar
  69. Ramirez N, Cutright T, Ju LK (2001) Pyrene biodegradation in aqueous solutions and soil slurries by Mycobacterium PYR-1 and enriched consortium. Chemosphere 44:1079–1086PubMedCrossRefGoogle Scholar
  70. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  71. Sakai M, Masai E, Asami H, Sugiyama K, Kimbara K, Fukuda M (2002) Diversity of 2, 3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. J Biosci Bioeng 93:421–427PubMedGoogle Scholar
  72. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19PubMedGoogle Scholar
  73. Seah SY, Labbe G, Nerdinger S, Johnson MR, Snieckus V, Eltis LD (2000) Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. J Biol Chem 275:15701–15708PubMedCrossRefGoogle Scholar
  74. Stingley RL, Khan AA, Cerniglia CE (2004) Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem Biophys Res Commun 322:133–146PubMedCrossRefGoogle Scholar
  75. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  76. Vila J, Lopez Z, Sabate J, Minguillon C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505PubMedCrossRefGoogle Scholar
  77. Vuilleumier S, Pagni M (2002) The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl Microbiol Biotechnol 58:138–146PubMedCrossRefGoogle Scholar
  78. Wang RF, Wennerstrom D, Cao WW, Khan AA, Cerniglia CE (2000) Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the polycyclic aromatic hydrocarbon-degrading bacterium Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 66:4300–4304PubMedCrossRefGoogle Scholar
  79. Zhou HW, Guo CL, Wong YS, Tam NF (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett 262:148–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Seong-Jae Kim
    • 1
  • Ohgew Kweon
    • 1
  • Richard C. Jones
    • 2
    • 3
  • Ricky D. Edmondson
    • 2
    • 4
  • Carl E. Cerniglia
    • 1
    Email author
  1. 1.Division of MicrobiologyNational Center for Toxicological Research/U.S. FDAJeffersonUSA
  2. 2.Division of Systems ToxicologyNational Center for Toxicological Research/U.S. FDAJeffersonUSA
  3. 3.NextGen/PRSAnn ArborUSA
  4. 4.Myeloma Institute for Research and TherapyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations