, Volume 19, Issue 5, pp 683–693 | Cite as

17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β-estradiol and estriol

  • Bram Pauwels
  • Klaas Wille
  • Herlinde Noppe
  • Hubert De Brabander
  • Tom Van de Wiele
  • Willy Verstraete
  • Nico Boon
Original Paper


17α-ethinylestradiol (EE2), the active compound of the contraceptive pill, is a recalcitrant estrogen, which is encountered at ng/l levels in wastewater treatment plant (WWTP) effluents and rivers and can cause feminization of aquatic organisms. The aim of this study was to isolate micro-organisms that could remove such low EE2 concentrations. In this study, six bacterial strains were isolated from compost that cometabolize EE2 when metabolizing estrone (E1), 17β-estradiol (E2) and estriol (E3). The strains belong to the α, β and γ-Proteobacteria. All six strains metabolize E2 over E1, at μg/l to ng/l concentrations. In 4 days, initial concentrations of 0.5 μg E2/l and 0.6 μg EE2/l were degraded to 1.8 ± 0.4 ng E2/l and 85 ± 16 ng EE2/l, respectively. No other metabolites besides E1, E2, E3 or EE2 were detected, suggesting that total degradation and cleavage of the aromatic ring occurred. This is the first study describing that bacteria able to metabolize E2, can subsequently cometabolize EE2 at low μg/l levels.


Estrogen Ethinylestradiol Cometabolism Acinetobacter sp. Pseudomonas sp. 











Hydraulic residence time


Sludge retention time


Wastewater treatment plant



The authors wish to thank IWT Vlaanderen to support this research with a Ph.D. funding (Grant Number IWT-33298). Petra Vandamme is greatly acknowledged for performing the molecular analyses. The authors wish to thank Ilse Forrez and Lynn Vanhaecke for their valuable comments.


  1. Adler P, Steger-Hartmann T, Kalbfus W (2001) Distribution of natural and synthetic estrogenic steroid hormones in water samples from Southern and Middle Germany. Acta Hydroch Hydrob 29:227–241CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Andersen H, Siegrist HR, Halling-Sørensen B et al (2003) Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 37(18):4021–4026PubMedCrossRefGoogle Scholar
  4. Cargouet M, Perdiz D, Mouatassim-Souali A et al (2003) Assessment of river contamination by estrogenic compounds in Paris area (France). Sci Total Environ 324:55–66Google Scholar
  5. Clara M, Strenn B, Ausserleitner M et al (2004) Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci Technol 50(5):29–36PubMedGoogle Scholar
  6. Feisti CF, Hegeman GD (1969) Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J Bacteriol 100(2):869–877Google Scholar
  7. Fujii K, Kikuchi S, Satomi M et al (2002) Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microbiol 68(4):2057–2060PubMedCrossRefGoogle Scholar
  8. Haiyan R, Shulan J, ud din Ahmad N et al (2007) Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere 66(2):340–346PubMedCrossRefGoogle Scholar
  9. Holbrook RD, Love NG, Novak JT (2004). Sorption of 17β-estradiol and 17α-ethinylestradiol by colloidal organic carbon derived from biological wastewater treatment systems. Environ Sci Technol 38:3322–3329PubMedCrossRefGoogle Scholar
  10. Hollender J EAWAG, Dübendorf, Switzerland, personal communication, 27/02/2006Google Scholar
  11. Johnson AC, Williams RJ (2004) A model to estimate influent and effluent concentrations of estradiol, estrone and ethinylestradiol at sewage treatment works. Environ Sci Technol 38(13):3649–3658PubMedCrossRefGoogle Scholar
  12. Johnson AC, Aerni HR, Gerritsen A et al (2005) Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Res 39:47–58PubMedCrossRefGoogle Scholar
  13. Joss A, Andersen H, Ternes TA et al (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimisation. Environ Sci Technol 38:3047–3055PubMedCrossRefGoogle Scholar
  14. Kim MH, Hao OJ (1999) Cometabolic degradation of chlorophenols by Acinetobacter species. Water Res 33(2):562–574CrossRefGoogle Scholar
  15. Lee HB, Liu D (2002) Degradation of 17 beta-estradiol and its metabolites by sewage bacteria. Water Air Soil Pollut 134(1–4):353–368Google Scholar
  16. Noppe H, De Wasch K, Poelmans S et al (2005) Development and validation of an analytical method for detection of estrogens in water. Anal Bioanal Chem 382:91–98PubMedCrossRefGoogle Scholar
  17. Øvreas L, Forney L, Daae FL et al (1997) Distribution of bacterioplankton in meromictic lake Saelevannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373PubMedGoogle Scholar
  18. Panter GH, Thompson RS, Beresford N et al (1999) Transformation of non-estrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere 38:3579–3596PubMedCrossRefGoogle Scholar
  19. Pruneda-Paz JL, Linares M, Cabrera JA et al (2004) Identification of a novel steroid inducible gene associated with the βhsd locus of Comamonas testosteroni. J Steroid Biochem 88:91–100CrossRefGoogle Scholar
  20. Seurinck S, Verstraete W, Siciliano SD (2003) Use of 16S–23S rRNA intergenic spacer region PCR and repetitive extragenic palindromic PCR analyses of Escherichia coli isolates to identify nonpoint fecal sources. Appl Environ Microbiol 69(8):4942–4950PubMedCrossRefGoogle Scholar
  21. Shi JH, Suzuki Y, Lee BD et al (2002) Isolation and characterization of the ethinylestradiol-biodegrading micro-organism Fusarium proliferatum strain HNS-1. Water Sci Technol 45:175–179PubMedGoogle Scholar
  22. Shi JH, Fujisawa S, Nakai S et al (2004a) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38(9):2322–2329PubMedCrossRefGoogle Scholar
  23. Shi JH, Suzuki Y, Nakai S et al (2004b) Mimbial degradation of estrogens using activated sludge and night soil-composting microorganisms. Water Sci Technol 50(8):153–159PubMedGoogle Scholar
  24. Stanier RY, Palleroni NJ, Douderoff M (1966) The aerobic Pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedGoogle Scholar
  25. Ternes TA, Stumpf M, Mueller J et al (1999a) Behavior and occurence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90PubMedCrossRefGoogle Scholar
  26. Ternes TA, Kreckel P, Mueller J (1999b) Behaviour and occurence of estrogens in municipal sewage treatment plans—II. Aerobic batch experiments with activated sludge. Sci Total Environ 228(1):91–99CrossRefGoogle Scholar
  27. Thomas KV, Hurst MR, Matthiessen P (2001) Characterization of estrogenic compounds in water samples collected from United Kingdom estuaries. Environ Toxicol Chem 20(10):2165–2170PubMedCrossRefGoogle Scholar
  28. Vader JS, van Ginkel CG, Sperling FMGM et al (2000) Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41:1239–1243PubMedCrossRefGoogle Scholar
  29. Verstraete W, Vandewerf H, Kucnerowicz F et al (1983) Specific measurement of soil microbial ATP. Soil Biol Biochem 15(4):391–396CrossRefGoogle Scholar
  30. Vethaak AD, Lahr J, Kuiper RV (2002) Estrogenic effects in fish in the Netherlands: some preliminary results. Toxicology 181:147–150PubMedCrossRefGoogle Scholar
  31. Weber S, Leuschner P, Kämpfer P et al (2005) Degradation of estradiol and ethinylestradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotech 67:106–112CrossRefGoogle Scholar
  32. Yoshimoto T, Nagai F, Fujimoto J et al (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70:5283–5289PubMedCrossRefGoogle Scholar
  33. Yi T, Harper WF (2005) Mechanisms for removal of 17α-ethinylestradiol in bioreactors. Proceedings of the 78th annual water environment federation technical exposition and conference (WEFTEC). Washington DC, pp 5140–5153Google Scholar
  34. Yi T, Harper WF (2007) The link between nitrification and biotransformation of 17α-ethinylestradiol. Environ Sci Technol 41(12):4311–4316PubMedCrossRefGoogle Scholar
  35. Yi T, Harper WF Jr, Holbrook RD et al (2006) The role of particle size and nitrification in removal of 17α-ethinylestradiol in bioreactors. ASCE J Environ Eng 132(11):1527–1529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Bram Pauwels
    • 1
  • Klaas Wille
    • 1
  • Herlinde Noppe
    • 2
  • Hubert De Brabander
    • 2
  • Tom Van de Wiele
    • 1
  • Willy Verstraete
    • 1
  • Nico Boon
    • 1
  1. 1.Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bio-engineering ScienceGhent UniversityGentBelgium
  2. 2.Laboratory of Chemical Analysis, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium

Personalised recommendations