Advertisement

Biodegradation

, Volume 19, Issue 4, pp 463–480 | Cite as

Microbial degradation of chlorinated benzenes

  • Jim A. FieldEmail author
  • Reyes Sierra-Alvarez
Review Paper

Abstract

Chlorinated benzenes are important industrial intermediates and solvents. Their widespread use has resulted in broad distribution of these compounds in the environment. Chlorobenzenes (CBs) are subject to both aerobic and anaerobic metabolism. Under aerobic conditions, CBs with four or less chlorine groups are susceptible to oxidation by aerobic bacteria, including bacteria (Burkholderia, Pseudomonas, etc.) that grow on such compounds as the sole source of carbon and energy. Sound evidence for the mineralization of CBs has been provided based on stoichiometric release of chloride or mineralization of 14C-labeled CBs to 14CO2. The degradative attack of CBs by these strains is initiated with dioxygenases eventually yielding chlorocatechols as intermediates in a pathway leading to CO2 and chloride. Higher CBs are readily reductively dehalogenated to lower chlorinated benzenes in anaerobic environments. Halorespiring bacteria from the genus Dehalococcoides are implicated in this conversion. Lower chlorinated benzenes are less readily converted, and mono-chlorinated benzene is recalcitrant to biotransformation under anaerobic conditions.

Keywords

Biotransformation Chlorobenzenes Dehalogenation Dechlorination Microbial degradation Organohalogens 

Abbreviations

CB

Chlorobenzene

DCB

Dichlorobenzene

TCB

Trichlorobenzene

TeCB

Tetrachlorobenzene

QCB

Pentachlorobenzene

HCB

Hexachlorobenzene

Dwt

Dry weight

Notes

Acknowledgment

The authors are grateful to Eurochlor for their financial support.

References

  1. Adrian L, Gorisch H (2002) Microbial transformation of chlorinated benzenes under anaerobic conditions. Res Microbiol 153:131–137Google Scholar
  2. Adrian L, Manz W, Szewzyk U et al (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64:496–503Google Scholar
  3. Adrian L, Szewzyk U, Gorisch H (2000a) Bacterial growth based on reductive dechlorination of trichlorobenzenes. Biodegradation 11:73–81Google Scholar
  4. Adrian L, Szewzyk U, Wecke J et al (2000b) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583Google Scholar
  5. Alfreider A, Vogt C, Babel W (2002) Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25:232–240Google Scholar
  6. Ballschmiter K, Scholz C (1980) Microbial degradation of chlorinated aromatic chemicals 6. formation of dichloro phenols and dichloro-benzocatechins from dichloro-benzene in micro molar solution by Pseudomonas spp. Chemosphere 9:457–468Google Scholar
  7. Ballschmiter K, Scholz C (1981) Microbial-degradation of chlorinated arenes. 7. Initial steps in the degradation of chlorobenzene derivatives by Pseudomonas putida. Angew Chem Int Edit Engl 20:955–956Google Scholar
  8. Ballschmiter K, Unglert C, Heinzmann P (1977) Microbiological degradation of aromatics. 4. formation of chlorophenols by microbial transformation of chlorobenzenes. Angew Chem Int Edit Engl 16:645–645Google Scholar
  9. Barber JL, Sweetman AJ, van Wijk D, Jones KC (2005) Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Sci Total Environ 349:1–44Google Scholar
  10. Bartels I, Knackmuss HJ, Reineke W (1984) Suicide Inactivation of catechol 2 3 dioxygenase from Pseudomonas putida MT-2 by 3 halo catechols. Appl Environ Microbiol 47:500–505Google Scholar
  11. Bartholomew GW, Pfaender FK (1983) Influence of spatial and temporal variations on organic pollutant bio degradation rates in an estuarine environment. Appl Environ Microbiol 45:103–109Google Scholar
  12. Beil S, Happe B, Timmis KN et al (1997) Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12—Dechlorination of 1,2,4,5-tetrachlorobenzene. Eur J Biochem 247:190–199Google Scholar
  13. Beil S, Mason JR, Timmis KN et al (1998) Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol 180:5520–5528Google Scholar
  14. Bestetti G, Galli E, Leoni B et al (1992) Regioselective hydroxylation of chlorobenzene and chlorophenols by a Pseudomonas putida. Appl Microbiol Biotechnol 37:260–263Google Scholar
  15. Beurskens JEM, Dekker CGC, Jonkhoff J et al (1993) Microbial dechlorination of hexachlorobenzene in a sedimentation area of the Rhine River. Biogeochemical 19:61–81Google Scholar
  16. Beurskens JEM, Dekker CGC, Vandenheuvel H et al (1994) Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favorable reactions. Environ Sci Technol 28:701–706Google Scholar
  17. Bosma TNP, Ballemans EMW, Hoekstra NK et al (1996) Biotransformation of organics in soil columns and an infiltration area. Ground Water 34:49–56Google Scholar
  18. Bosma TNP, Vandermeer JR, Schraa G et al (1988) Reductive dechlorination of all trichlorobenzene and dichlorobenzene isomers. FEMS Microbiol Ecol 53:223–229Google Scholar
  19. Brahushi F, Dorfler U, Schroll R et al (2002) Environmental behavior of monochlorobenzene in an arable soil. Fresenius Environ Bull 11:599–604Google Scholar
  20. Brahushi F, Dorfler U, Schroll R et al (2004) Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity. Chemosphere 55:1477–1484Google Scholar
  21. Brunsbach FR, Reineke W (1994) Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol 42:415–420Google Scholar
  22. Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029Google Scholar
  23. Chang BV, Chen YM, Yuan SY et al (1997) Reductive dechlorination of hexachlorobenzene by an anaerobic mixed culture. Water Air Soil Pollut 100:25–32Google Scholar
  24. Chang BV, Su CJ, Yuan SY (1998) Microbial hexachlorobenzene dechlorination under three reducing conditions. Chemosphere 36:2721–2730Google Scholar
  25. Chartrain M, Ikemoto N, Taylor et al (2000) Production of cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene (toluene-cis-glycol) by Rhodococcus sp MA 7249. J Biosci Bioeng 90:321–327Google Scholar
  26. Chen IM, Chang BV, Yuan SY et al (2002a) Reductive dechlorination of hexachlorobenzene under various additions. Water Air Soil Pollut 139:61–74Google Scholar
  27. Chen XH, Christopher A, Jones JP et al (2002b) Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. J Biol Chem 277:37519–37526Google Scholar
  28. D’Annibale A, Ricci M, Leonardi et al (2005) Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnol Bioeng 90:723–731Google Scholar
  29. Debont JAM, Vorage M, Hartmans S et al (1986) Microbial-degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52:677–680Google Scholar
  30. Dermietzel J, Vieth A (2002) Chloroaromatics in groundwater: chances of bioremediation. Environ Geol 41:683–689Google Scholar
  31. Dionisi D, Bertin L, Bornoroni L et al (2006) Removal of organic xenobiotics in activated sludges under aerobic conditions and anaerobic digestion of the adsorbed species. J Chem Technol Biotechnol 81:1496–1505Google Scholar
  32. Dolfing J, Harrison KB (1992) Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ Sci Technol 26:2213–2218Google Scholar
  33. Fathepure BZ, Tiedje JM, Boyd SA (1988) Reductive dechlorination of hexachlorobenzene to trichlorobenzenes and dichlorobenzenes in anaerobic sewage- sludge. Appl Environ Microbiol 54:327–330Google Scholar
  34. Fathepure BZ, Vogel TM (1991) Complete Degradation of polychlorinated hydrocarbons by a 2- stage biofilm reactor. Appl Environ Microbiol 57:3418–3422Google Scholar
  35. Feidieker D, Kampfer P, Dott W (1994) Microbiological and chemical evaluation of a site contaminated with chlorinated aromatic-compounds and hexachlorocyclohexanes. FEMS Microbiol Ecol 15:265–278Google Scholar
  36. Feidieker D, Kampfer P, Dott W (1995) Field-scale investigations on the biodegradation of chlorinated aromatic-compounds and HCH in the subsurface environment. J Contam Hydrol 19:145–169Google Scholar
  37. Fennell DE, Nijenhuis I, Wilson SF et al (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081Google Scholar
  38. Griebler C, Adrian L, Meckenstock RU et al (2004) Stable carbon isotope fractionation during aerobic and anaerobic transformation of trichlorobenzene. FEMS Microbiol Ecol 48:313–321Google Scholar
  39. Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301Google Scholar
  40. Haigler BE, Pettigrew CA, Spain JC (1992) Biodegradation of mixtures of substituted benzenes by Pseudomonas sp strain-JS150. Appl Environ Microbiol 58:2237–2244Google Scholar
  41. Holliger C, Schraa G, Stams AJM et al (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3- dichlorobenzene. Appl Environ Microbiol 58:1636–1644Google Scholar
  42. Holscher T, Gorisch H, Adrian L (2003) Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp strain CBDB1. Appl Environ Microbiol 69:2999–3001Google Scholar
  43. Jayachandran G, Gorisch H, Adrian L (2003) Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp strain CBDB1. Arch Microbiol 180:411–416Google Scholar
  44. Jechorek M, Wendlandt KD, Beck M (2003) Cometabolic degradation of chlorinated aromatic compounds. J Biotechnol 102:93–98Google Scholar
  45. Jones JP, O’Hare EJ, Wong LL (2001) Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam)). Eur J Biochem 268:1460–1467Google Scholar
  46. Kaschl A, Vogt C, Uhlig S et al (2005) Isotopic fractionation indicates anaerobic monochlorobenzene biodegradation. Environ Toxicol Chem 24:1315–1324Google Scholar
  47. Kastner M, Fischer A, Nijenhuis L et al (2006) Assessment of microbial in situ activity in contaminated aquifers. Eng Life Sci 6:234–251Google Scholar
  48. Kiernicka J, Seignez C, Peringer P (1999) Escherichia hermanii—A new bacterial strain for chlorobenzene degradation. Lett Appl Microbiol 28:27–30Google Scholar
  49. Klecka GM, Gibson DT (1981) Inhibition of catechol 2 3 di oxygenase from Pseudomonas putida by 3 chloro catechol. Appl Environ Microbiol 41:1159–1165Google Scholar
  50. Klecka GM, McDaniel SG, Wilson PS et al (1996) Field evaluation of a granular activated carbon fluid-bed bioreactor for treatment of chlorobenzene in groundwater. Environ Prog 15:93–107Google Scholar
  51. Lapertot M, Seignez C, Ebrahimi S et al (2006) Enhancing production of adapted bacteria to degrade chlorinated aromatics. Ind Eng Chem Res 45:6778–6784Google Scholar
  52. Li H, Liu YH, Luo N et al (2006) Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp strain ZD22. Res Microbiol 157:629–636Google Scholar
  53. MacLeod M, Mackay D (1999) An assessment of the environmental fate and exposure of benzene and the chlorobenzenes in Canada. Chemosphere 38:1777–1796Google Scholar
  54. Malcom HM, Howe PD, Dobson S (2004) Chlorobenzenes other than Hexachlorobenzene: Environmental Aspects. Concise International Chemical Assessment Document 60. World Health Organization, Geneva, p 36Google Scholar
  55. Marinucci AC, Bartha R (1979) Biodegradation of 1,2,3-trichlorobenzene and 1,2,4- trichlorobenzene in soil and in liquid enrichment culture. Appl Environ Microbiol 38:811–817Google Scholar
  56. Mars AE, Kasberg T, Kaschabek SR et al (1997) Microbial degradation of chloroaromatics: Use of the meta- cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537Google Scholar
  57. Masunaga S, Susarla S, Yonezawa Y (1996) Dechlorination of chlorobenzenes in anaerobic estuarine sediment. Water Sci Technol 33:173–180Google Scholar
  58. Matheus DR, Bononi VLR, Machado KMG (2000) Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World J Microbiol Biotechnol 16:415–421Google Scholar
  59. Mathur AK, Sundaramurthy J, Balomajumder C (2006) Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter. J Hazard Mater 137:1560–1568Google Scholar
  60. Middeldorp PJM, Jaspers M, Zehnder AJB, Schraa G (1996) Biotransformation of α-, β-, γ-, and δ-hexachlorocyclohexane under methanogenic conditions. Environ Sci Technol 30:2345–2349Google Scholar
  61. Middeldorp PJM, deWolf J, Zehnder AJB et al (1997) Enrichment and properties of a 1,2,4-trichlorobenzene- dechlorinating methanogenic microbial consortium. Appl Environ Microbiol 63:1225–1229Google Scholar
  62. Monferran MV, Echenique JR, Wunderlin DA (2005) Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61:98–106Google Scholar
  63. Mpanias CJ, Baltzis BC (1998) An experimental and modeling study on the removal of mono- chlorobenzene vapor in biotrickling filters. Biotechnol Bioeng 59:328–343Google Scholar
  64. Naziruddin M, Grady CPL, Tabak HH (1995) Determination of biodegradation kinetics of volatile organic- compounds through the use of respirometry. Water Environ Res 67:151–158Google Scholar
  65. Nishino SF, Spain JC, Belcher LA et al (1992) Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Appl Environ Microbiol 58:1719–1726Google Scholar
  66. Nishino SF, Spain JC, Pettigrew CA (1994) Biodegradation of chlorobenzene by indigenous bacteria. Environ Toxicol Chem 13:871–877Google Scholar
  67. Oh YS, Bartha R (1994) Design and performance of a trickling air bio-filter for chlorobenzene and o-dichlorobenzene vapors. Appl Environ Microbiol 60:2717–2722Google Scholar
  68. Oldenhuis R, Kuijk L, Lammers A et al (1989) Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Appl Microbiol Biotechnol 30:211–217Google Scholar
  69. Oltmanns RH, Rast HG, Reineke W (1988) Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl Microbiol Biotechnol 28:609–616Google Scholar
  70. Pettigrew CA, Haigler BE, Spain JC (1991) Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl Environ Microbiol 57:157–162Google Scholar
  71. Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392Google Scholar
  72. Potrawfke T, Timmis KN, Wittich RM (1998) Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Appl Environ Microbiol 64:3798–3806Google Scholar
  73. Prytula MT, Pavlostathis SG (1996) Effect of contaminant and organic matter bioavailability on the microbial dehalogenation of sediment-bound chlorobenzenes. Water Res 30:2669–2680Google Scholar
  74. Ramanand K, Balba MT, Duffy J (1993) Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl Environ Microbiol 59:3266–3272Google Scholar
  75. Rapp P (2001) Multiphasic kinetics of transformation of 1,2,4- trichlorobenzene at nano- and micromolar concentrations by Burkholderia sp strain PS14. Appl Environ Microbiol 67:3496–3500Google Scholar
  76. Rapp P, Timmis KN (1999) Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp strain PS14 in liquid cultures and in soil. Appl Environ Microbiol 65:2547–2552Google Scholar
  77. Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp nov. a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701Google Scholar
  78. Reineke W, Knackmuss HJ (1984) Microbial-metabolism of haloaromatics—isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402Google Scholar
  79. Rittman BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw Hill, New York, p 754Google Scholar
  80. Rosenbrock P, Martens R, Buscot F et al (1997) Initiation of [Cl-36]hexachlorobenzene dechlorination in three different soils under artificially induced anaerobic conditions. Appl Microbiol Biotechnol 48:115–120Google Scholar
  81. Sander P, Wittich RM, Fortnagel P et al (1991) Degradation of 1,2,4-trichlorobenzene and 1,2,4,5- tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57:1430–1440Google Scholar
  82. Schraa G, Boone ML, Jetten MSM et al (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp strain- A175. Appl Environ Microbiol 52:1374–1381Google Scholar
  83. Schroll R, Brahushi F, Dorfler U et al (2004) Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environ Poll 127:395–401Google Scholar
  84. Seignez C, Adler N, Thoeni C et al (2004) Steady-state and transient-state performance of a biotrickling filter treating chlorobenzene-containing waste gas. Appl Microbiol Biotechnol 65:33–37Google Scholar
  85. Sommer C, Gorisch H (1997) Enzymology of the degradation of (di)chlorobenzenes by Xanthobacter flavus 14p1. Arch Microbiol 167:384–391Google Scholar
  86. Spain JC, Nishino SF (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53:1010–1019Google Scholar
  87. Spiess E, Gorisch H (1996) Purification and characterization of chlorobenzene cis- dihydrodiol dehydrogenase from Xanthobacter flavus 14p1. Arch Microbiol 165:201–205Google Scholar
  88. Spiess E, Sommer C, Gorisch H (1995) Degradation of 1,4-dichlorobenzene by Xanthobacter flavus-14p1. Appl Environ Microbiol 61:3884–3888Google Scholar
  89. Sullivan JP, Chase HA (1996) 1,2,3-Trichlorobenzene transformation by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Microbiol Biotechnol 45:427–433Google Scholar
  90. Susarla S, Yonezawa Y, Masunaga S (1997) Transformation kinetics and pathways of chlorophenols and hexachlorobenzene in fresh water lake sediment under anaerobic conditions. Environ Technol 18:903–911CrossRefGoogle Scholar
  91. Tsuchiya T, Yamaha T (1984) Reductive Dechlorination of 1,2,4-Trichlorobenzene by Staphylococcus epidermidis isolated from intestinal contents of rats. Agric Biol Chem 48:1545–1550Google Scholar
  92. van Agteren MH, Keuning S, Janssen DB (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer Academic Publishers, Dordrecht, 491 pGoogle Scholar
  93. Van der Meer JR, Bosma TNP, De Bruin WP et al (1992) Versatility of soil column experiments to study biodegradation of halogenated compounds under environmental conditions. Biodegradation 3:265–284Google Scholar
  94. Van der Meer JR, Roelofsen W, Schraa G et al (1987) Degradation of low concentrations of dichlorobenzenes and 1 2 4 trichlorobenzene by Pseudomonas sp strain P51 in nonsterile soil columns. FEMS Microbiol Ecol 45:333–342Google Scholar
  95. Van der Meer JR, Werlen C, Nishino SF et al (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193Google Scholar
  96. Vogt C, Alfreider A, Lorbeer H et al (2004a) Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. J Contam Hydrol 68:121–141Google Scholar
  97. Vogt C, Simon D, Alfreider A et al (2004b) Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol. Environ Toxicol Chem 23:265–270Google Scholar
  98. von Wintzingerode F, Schlotelburg C, Hauck R et al (2001) Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2- dichloropropane. FEMS Microbiol Ecol 35:189–196Google Scholar
  99. von Wintzingerode F, Selent B, Hegemann W et al (1999) Phylogenetic analysis of an anaerobic, trichlorobenzene transforming microbial consortium. Appl Environ Microbiol 65:283–286Google Scholar
  100. Wang MJ, Jones KC (1994a) Behavior and fate of chlorobenzenes (CBs) introduced into soil- plant systems by sewage-sludge application—A review. Chemosphere 28:1325–1360Google Scholar
  101. Wang MJ, Jones KC (1994b) Behavior and fate of chlorobenzenes in spiked and sewage sludge-amended soil. Environ Sci Technol 28:1843–1852Google Scholar
  102. Williams M, Bosch S, Plewak D (2006) Toxicological Profile for Dichlorobenzenes. Agency for Toxic Substances and Disease Registry, Atlanta, p 404Google Scholar
  103. Wu QZ, Milliken CE, Meier GP et al (2002) Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ Sci Technol 36:3290–3294Google Scholar
  104. Yadav JS, Wallace RE, Reddy CA (1995) Mineralization of monochlorobenzenes and dichlorobenzenes and simultaneous degradation of chloro-substituted and methyl- substituted benzenes by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:677–680Google Scholar
  105. Yan DZ, Liu H, Zhou NY (2006) Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286Google Scholar
  106. Yeh DH, Pavlostathis SG (2005) Anaerobic biodegradability of Tween surfactants used as a carbon source for the microbial reductive dechlorination of hexachlorobenzene. Water Sci Technol 52:343–349Google Scholar
  107. Yuan SY, Su CJ, Chang BV (1999) Microbial dechlorination of hexachlorobenzene in anaerobic sewage sludge. Chemosphere 38:1015–1023Google Scholar
  108. Zacharias B, Lang E, Hanert HH (1995) Biodegradation of chlorinated aromatic-hydrocarbons in slow sand filters simulating conditions in contaminated soil—pilot-study for in-situ cleaning of an industrial site. Water Res 29:1663–1671Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Chemical and Environmental EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations