Skip to main content
Log in

Evaluation of the microbial diversity in a horizontal-flow anaerobic immobilized biomass reactor treating linear alkylbenzene sulfonate

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l−1 of meat extract, 115 mg l−1 of starch, 80 mg l−1 of saccharose, 320 mg l−1 of sodium bicarbonate and 5 ml l−1 of salt solution) in the following stages of operation: SI—synthetic substrate, SII—synthetic substrate with 7 mg l−1 of LAS, SIII—synthetic substrate with 14 mg l−1 of LAS and SIV—synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l−1 of LAS, without starch. At the end of the experiment (313 days) a degradation of ∼35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l−1). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almendariz FJ, Meráz M, Soberón G, Monroy O (2001) Degradation of linear alkylbenzene sulfonate (LAS) in an acidogenic reactor bioaugment with a UIT Pseudomonas aeroginosa (M113) strain. Water Sci Technol 44(4):183–188

    CAS  Google Scholar 

  • APHA-AWWA-WPCF (2000) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA

    Google Scholar 

  • Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BKC (1999) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982

    Article  CAS  Google Scholar 

  • Bolãnos ML, Varesche MBA, Zaiat M, Foresti E (2001) Phenol degradation in Horizontal-flow anaerobic immobilized biomass (HAIB) reactor under mesophilic conditions. Water Sci Technol 4:167–174

    Google Scholar 

  • Cattony EBM, Chinalia FA, Ribeiro R, Zaiat M, Foresti E, Varesche MBA (2005) Ethanol and Toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate. Biotechnol Bioeng 91:244–253

    Article  CAS  Google Scholar 

  • Chun J (1995) Computer assisted classification and identification of Actinomycetes. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK

  • Denger K, Cook AM (1999) Linear alkylbenzenesulfonate (LAS) bioavailable to anaerobic bacteria as a source of sulfur. J Appl Microbiol 86:65–168

    Article  Google Scholar 

  • Dillalo R, Albertson OE (1961) Volatile acids by direct tritation. J Water Pollut Control Fed 33:356–365

    Google Scholar 

  • Duarte ICS, Oliveira LL, Buzzini AP, Adorno MAT, Varesche MBA (2006) Development of a method by HPLC to determine LAS and its application in anaerobic reactors. J Braz Chem Soc 17:1360–1367

    Article  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  Google Scholar 

  • Fytianos K, Voudrias E, Mouratidou T (1998) The sorption—desorption behaviour of linear alkylbenzene sulfonate in marine sediments. Chemosphere 36:2067–2074

    Article  CAS  Google Scholar 

  • Garcia MT, Campos E, Dalmau M, Ribosa I, Sanchez-Leal J (2002) Structure-activity relationships for association of LAS with activated sludge. Chemosphere 49:279–286

    Article  CAS  Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and measurement of specific surface areas of solids. J Chem Soc 4:3973–3993

    Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813

    CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O’donnell A G, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  Google Scholar 

  • Kertesz MA, Kolbener P, Stockinger H, Beil S, Cook AM (1994) Desulfonation of linear alkylbenzene sulfonate surfactants and related compounds by bacteria. Appl Environ Microbiol 60:2296–3303

    CAS  Google Scholar 

  • Khleifat KM (2006) Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme Microb Technol 39:1030–1035

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Konig H, Stetter AO (1989) Archaeobacteria. In: Staley JT, Bryant MP, Fenning N, Holf JG (eds) Berger’s manual of systematic bacteriology. Williams and Wilkins, USA

  • Kudo Y, Nakajima T, Miyaki T, Oyaizu H (1997) Methanogen flora of paddy soils in Japan. FEMS Microbiol Ecol 23:39–48

    Article  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software, Arizona State University, Tempe, Arizona, USA. Bioinformatics 17:1244–1245

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Academic, Chichester, UK, pp 115–175

    Google Scholar 

  • Lie TJ, Pitta T, Leadbetter ER, Godchaux W, Leadbetter JR (1996) Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol 166:204–210

    Article  CAS  Google Scholar 

  • Lobner T, Toräng L, Batston EDJ, Schmidt JE, Angelidaki I (2005) Effects of process stability on anaerobic biodegradation of LAS in UASB reactors. Biotechnol Bioeng 89:758–765

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Matthies C, Kubner CH, Acker G, Drake HL (2001) Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol 51:1119–1125

    CAS  Google Scholar 

  • Mogensen AS, Haagensen F, Ahring BK (2003) Anaerobic degradation of linear alkylbenzene sulfonate. Environ Toxicol Chem 22:706–711

    Article  CAS  Google Scholar 

  • Muyzer G, Wall EC, Uitterlinden G (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction—amplified genes coding for 16S RNAr. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nakagawa T, Sato S, Yamamoto Y, Fukui F (2002) Successive changes in community structure of an ethylbenzene-degradating sulfate- reducing consortium. Water Res 36:2813–2823

    Article  CAS  Google Scholar 

  • Nardi IR, Ribeiro R, Zaiat M, Foresti E (2005) Anaerobic packed-bed reactor bioremediation of gasoline contamined aquifers. Process Biochem 40:587–592

    Article  CAS  Google Scholar 

  • Nielsen AT, Liu WT, Filipe C, Grady L, Molin SO, Stahl D (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258

    CAS  Google Scholar 

  • Oliveira SWB, Moraes EM, Adorno MAT, Varesche MBA, Foresti E, Zatat M (2004) Formaldehyde degradation in an anaerobic packed-bed bioreactor. Water Res 38:1685–1694

    Article  CAS  Google Scholar 

  • Ripley LE, Boyle WC, Converse JC (1986) Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed 58:406–465

    CAS  Google Scholar 

  • Saia FT, Damianovic MHRZ, Cattony EBM, Brucha G, Foresti E, Vazoller RF (2007) Anaerobic biodegradation of pentachlorophenol in a fixed-film reactor inoculated with polluted sediment from Santos-São Vicente Estuary, Brazil. Environ Biotechnol. doi:10.1007/s00253-007-0841-z

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sanz JL, Culubret E, Ferrer J, Moreno A, Berna SL (2003) Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in Upflow anaerobic sludge Blanket (UASB) reactors. Biodegradation 14:57–64

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). The authors acknowledge the grants received from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. S. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, I.C.S., Oliveira, L.L., Saavedra, N.K.D. et al. Evaluation of the microbial diversity in a horizontal-flow anaerobic immobilized biomass reactor treating linear alkylbenzene sulfonate. Biodegradation 19, 375–385 (2008). https://doi.org/10.1007/s10532-007-9143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9143-5

Keywords

Navigation