, Volume 18, Issue 5, pp 525–539 | Cite as

The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP

  • Ronald L. CrawfordEmail author
  • Carina M. Jung
  • Janice L. Strap


Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.


Pentachlorophenol PCP pcpB Sphingomonas Lateral gene transfer Gene recruitment 





lateral gene transfer


maleylacetate isomerase


open reading frame


polymerase chain reaction


restriction fragment length polymorphism















Metagenomic analyses reported here were supported by grant 1-R21ES012814 from the National Institute of Environmental Health Sciences.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  3. Anandarajah K, Kiefer Jr PM, Donohoe BS, Copley SD (2000) Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemisty 39:5303–5311CrossRefGoogle Scholar
  4. Apajalahti JH, Karpanoja AP, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol mineralizing actinomycete. Int J Syst Bacteriol 36:246–251Google Scholar
  5. Apajalahti JH, Salkinoja-Salonen MS (1987a) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol 169:675–681Google Scholar
  6. Apajalahti JHA, Salkinoja-Salonen MS (1987b) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol 169:5125–5130Google Scholar
  7. Beaulieu M, Becaert V, Deschenes L, Villemur R (2000) Evolution of bacterial diversity during enrichment of PCP-degrading activated soils. Microb Ecol 40:345–356Google Scholar
  8. Berger RS (1983) Occurrence of 2,6-dichlorophenol in Dermacentor albipictus and Haemaphysalis leporispalustris (acari: Ixodidae). J Med Entomol 20:103Google Scholar
  9. Bielefeldt AR, Cort T (2005) Dual substrate biodegradation of a nonionic surfactant and pentachlorophenol by Sphingomonas chlorophenolica RA2. Biotechnol Bioeng 89:680–689CrossRefGoogle Scholar
  10. Boon N, Depuydt S, Verstraete W (2006) Evolutionary algorithms and flow cytometry to examine the parameters influencing transconjugant formation. FEMS Microbiol Ecol 55:17–27CrossRefGoogle Scholar
  11. LM, Eiras AE, Ferri PH, Lobo AC (2002) The role of 2,6-dichlorophenol as sex pheromone of the tropical horse tick Anocentor nitens (Acari: Ixodidae). Exp Appl Acarol 27:223–230CrossRefGoogle Scholar
  12. Breitbart M, Miyake JH, Rohwer F (2004) Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett 236:249–256CrossRefGoogle Scholar
  13. Briglia M, Eggen RI, Van Elsas DJ ,De Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-I(T) to the genus Mycobacterium. Int J Syst Bacteriol 44:494–498CrossRefGoogle Scholar
  14. Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680CrossRefGoogle Scholar
  15. Camus JC, Pryor MJ, Medigue C ,Cole ST (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. J Microbiol 148:2967–2973Google Scholar
  16. Cassidy MB, Lee H, Trevors JT, Zablotowicz RB (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp. UG30. J Ind Microbiol Biotechnol 23:232–241CrossRefGoogle Scholar
  17. Chai CT (2002) Characterization of PCP-degrading bacteria isolated from a PCP-contaminated site. Master thesis, National Sun Yat-Sen University, Kaohsiung, TaiwanGoogle Scholar
  18. Coenye T, Henry D, Speert DP, Vandamme P (2004) Burkholderia phenoliruptrix sp. nov. to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst Appl Microbiol 27:623–627CrossRefGoogle Scholar
  19. Colores GM, Radehaus PM, Schmidt SK (1995) Use of a pentachlorophenol degrading bacterium to bioremediate highly contaminated soil. Appl Biochem Biotechnol 54:271–275Google Scholar
  20. Colosio C, Maroni M, Barcellini W, Meroni P, Alcini D, Colombi A, Cavallo D, Foa V (1993) Toxicological and immunological findings in workers exposed to pentachlorophenol (PCP). Arch Environ Health 48:81–88CrossRefGoogle Scholar
  21. Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265CrossRefGoogle Scholar
  22. Crawford RL, Ederer MM (1999) Phylogeny of Sphingomonas species that degrade pentachlorophenol. J Ind Microbiol Biotechnol 23:320–325CrossRefGoogle Scholar
  23. Dai M, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397CrossRefGoogle Scholar
  24. Dai M, Rogers JB, Warner JR, Copley SD (2003) A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol 185:302–310CrossRefGoogle Scholar
  25. Danganan CE, Ye RW, Daubaras DL, Xun L, Chakrabarty AM (1994) Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Appl Environ Microbiol 60:4100–4106Google Scholar
  26. Ederer MM, Crawford RL, Herwig RP, Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49CrossRefGoogle Scholar
  27. Edwards U, Rogall T, Blocker H, Emde M, Bottger E (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res 17:7843–7853CrossRefGoogle Scholar
  28. Fenchel T (2003) Biogeography for bacteria. Science 301:925–926CrossRefGoogle Scholar
  29. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882CrossRefGoogle Scholar
  30. Geng MM, Schuhmacher A, Muehldorfer I, Bensch KW, Schaefer KP, Schneider S, Pohl T, Essig A, Marre R, Melchers K (2003) The genome sequence of Chlamydia pneumoniae TW183 and comparison with other Chlamydia strains based on whole genome sequence analysis (GenBank accession number NC_005043)Google Scholar
  31. Gisi MR, Xun L (2003) Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Bacteriol 185:2786–279CrossRefGoogle Scholar
  32. Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1991–92) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208Google Scholar
  33. Gribble GW (1996) Naturally occurring organohalogen compounds—a comprehensive study. In: Herz GW, Kirby RE, Moore RE, Steglich W, Tamm CH (eds) Progress in the Chemistry of Organic Natural Products, Springer-Verlag, Vienna, Austria, pp 1–420Google Scholar
  34. Habash MB, Beaudette LA, Cassidy MB, Leung KT, Hoang TA, Vogel HJ, Trevors JT, Lee H (2002) Characterization of tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Biochem Biophys Res Commun 299:634–640CrossRefGoogle Scholar
  35. Haggblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S, Kroppenstedt RM, Hagglblom MM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol 44:485–493. Erratum in: Int J Syst Bacteriol (1994) 44:854Google Scholar
  36. Haggblom MM, Nohynek LJ, Salkinoja-Salonen MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol 54:3043–3052Google Scholar
  37. Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 72:2637–2643CrossRefGoogle Scholar
  38. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531CrossRefGoogle Scholar
  39. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338CrossRefGoogle Scholar
  40. Kao CM, Chai CT, Liu JK, Yeh TY, Chen KF, Chen SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672CrossRefGoogle Scholar
  41. Kao CM, Liu JK, Chen YL, Chai CT, Chen SC (2005) Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU. J Hazard Mater 124:68–73CrossRefGoogle Scholar
  42. Karlson U, Rojo F, van Elsas JD, Moore E (1996) Genetic and serological evidence for the recognition of four pentachlorophenol degrading bacterial strains as a species of the genus Sphingomonas. Syst Appl Microbiol 18:539–548Google Scholar
  43. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Nat Acad Sci USA 82:6955–6959CrossRefGoogle Scholar
  44. Lange CC, Schneider BJ, Orser CS (1996) Verification of the role of PCP 4-monooxygenase in chlorine elimination from pentachlorophenol by Flavobacterium sp. strain ATCC 39723. Biochem Biophys Res Commun 219:146–149CrossRefGoogle Scholar
  45. Leung KT, Campbell S, Gan Y, White DC, Lee H, Trevors JT (1999) The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247–253CrossRefGoogle Scholar
  46. Leung KT, Cassidy MB, Shaw KW, Lee H, Trevors JT, Lohmeier-Vogel EM, Vogel HJ (1997) Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J Microbiol Biotechnol 13:305–313CrossRefGoogle Scholar
  47. Li DY, Eberspacher J, Wagner B, Kuntzer J, Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol 57:1920–1928Google Scholar
  48. Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500CrossRefGoogle Scholar
  49. Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360CrossRefGoogle Scholar
  50. Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA. (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197CrossRefGoogle Scholar
  51. Martin-Le Garrec G, Artaud I, Capeillere-Blandin C (2001) Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100. Biochim Biophys Acta 1547:288–2301Google Scholar
  52. Martins JM, Monrozier JL, Chalamet A, Bardin R (1997) Microbial response to repeated application of low concentrations of pentachlorophenol in an alfisol under pasture. Chemosphere 35:163–1650CrossRefGoogle Scholar
  53. McCarthy DL, Claude AA, Copley SD (1997) In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 63:1883–1888Google Scholar
  54. Nam IH, Chang Y-S, Hong H-B, Lee H-E (2003) A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol. Appl Microbiol Biotechnol 62:284–290CrossRefGoogle Scholar
  55. Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidson TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, Fraser CM (2004) Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA 101:14247–14251CrossRefGoogle Scholar
  56. Nohynek LJ, Suhonen EL, Nurmiaho-Lassila EL, Hantula J, Salkinoja-Salonen M (1995) Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538Google Scholar
  57. Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata Y, Mitsui Y, Takagi M (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–398CrossRefGoogle Scholar
  58. Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288CrossRefGoogle Scholar
  59. Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ (1993) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416Google Scholar
  60. Radehaus PM, Schmidt SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl Environ Microbiol 58:2879–2885Google Scholar
  61. Resnik SM, Chapman PJ (1994) Physiological properties and substrate specificity of a pentachlorophenoldegrading Pseudomonas species. Biodegradation 5:47-54Google Scholar
  62. Saber D, Crawford RL (1985) Isolation and characterization of pentachlorophenol-degrading Flavobacterium strains. Appl Environ Microbiol 50:1512–1518Google Scholar
  63. Saboo VM, Gealt MA (1998) Gene sequences of the pcpB gene of pentachlorophenol-degrading Sphingomonas chlorophenolica found in nondegrading bacteria. Can J Microbiol 44:667–675CrossRefGoogle Scholar
  64. Shah S, Thakur IS (2003) Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent. Curr Microbiol 47:65–70CrossRefGoogle Scholar
  65. Stanlake GJ, Finn RK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 44:1421–1427Google Scholar
  66. Steiert JG, Crawford RL (1986) Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun 141:825–830CrossRefGoogle Scholar
  67. Steiert JG, Pignatello JJ, Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 53:907–910Google Scholar
  68. Steinle P, Stucki G, Stettler R, Hanselmann KW (1998) Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl Environ Microbiol 64:2566–2571Google Scholar
  69. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucl Acids Res 30:3927–3935CrossRefGoogle Scholar
  70. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417Google Scholar
  71. Thakur IS, Verma P, Upadhayaya K. (2002) Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Comm 290:770–774CrossRefGoogle Scholar
  72. Tiirola MA, Mannisto MK, Puhakka JA, Kulomaa MS (2002a) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68:173–180CrossRefGoogle Scholar
  73. Tiirola MA, Wang H, Paulin L, Kulomaa MS (2002b) Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501CrossRefGoogle Scholar
  74. Tomasi I, Artaud I, Bertheau Y, Mansuy D (1995) Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol 177:307–311Google Scholar
  75. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269CrossRefGoogle Scholar
  76. Topp E, Xun LY, Orser CS (1992) Biodegradation of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATCC 39723 is accompanied by cyanogenesis. Appl Environ Microbiol 58:502–506Google Scholar
  77. Uotila JS, Kitunen VH, Coote T, Saastamoinen T, Salkinoja-Salonen M, Apajalahti JH (1995) Metabolism of halohydroquinones in Rhodococcus chlorophenolicus PCP-1. Biodegradation 6:119–126CrossRefGoogle Scholar
  78. Uotila JS, Salkinoja-Salonen MS, Apajalahti JH (1991) Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation 2:25–31CrossRefGoogle Scholar
  79. Vandecasteele FPJ, Hess TF, Crawford RL (2003) Constructing microbial consortia with optimal biomass production using a genetic algorithm. 2003 Genetic and Evolutionary Computation Conference (GECCO): Late-breaking papers, pp 299–302Google Scholar
  80. Vandecasteele FPJ (2003) Constructing efficient microbial consortia using a genetic algorithm. Biological applications for genetic and evolutionary computation, Genetic and evolutionary computation conference workshop program, p 69Google Scholar
  81. Vandecasteele FPJ, Crawford RL, Hess TF (2006) Demonstrating the suitability of genetic algorithms for driving microbial ecosystems in desirable directions. Antonie von Leeuwenhoek In pressGoogle Scholar
  82. Wieser M, Wagner B, Eberspacher J, Lingens F (1997) Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. J Bacteriol 179:202–208Google Scholar
  83. Xun L (1996) Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. J Bacteriol 178:2645–2649Google Scholar
  84. Xun L, Bohuslavek J, Cai M (1999) Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem Biophys Res Commun 266:322–325CrossRefGoogle Scholar
  85. Xun L, Orser CS (1991a) Biodegradation of triiodophenol by cell-free extracts of a pentachlorophenol-degrading Flavobacterium sp. Biochem Biophys Res Commun 174:43–48CrossRefGoogle Scholar
  86. Xun LY, Orser CS (1991b) Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA). J Bacteriol 173:2920–2926Google Scholar
  87. Xun L, Topp E, Orser CS (1992a) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol 174:2898–2902Google Scholar
  88. Xun L, Topp E, Orser CS (1992b) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007Google Scholar
  89. Yan DZ, Liu H, Zhou NY (2006) Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286CrossRefGoogle Scholar
  90. Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62:709–714CrossRefGoogle Scholar
  91. Zaborina O, Baskunov B, Baryshnikova L, Golovleva L (1997) Degradation of pentachlorophenol in soil by Streptomyces rochei 303. J Environ Sci Health B 32:55–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Ronald L. Crawford
    • 1
    Email author
  • Carina M. Jung
    • 1
    • 2
  • Janice L. Strap
    • 1
    • 3
  1. 1.Environmental Biotechnology Institute, Food Research Center 202University of IdahoMoscowUSA
  2. 2.National Center for Toxicological ResearchU.S. Food and Drug AdministrationJeffersonUSA
  3. 3.Faculty of ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations