Advertisement

Biodegradation

, Volume 18, Issue 3, pp 333–342 | Cite as

Degradation of polyethylene succinate (PES) by a new thermophilic Microbispora strain

  • Kim-Chi Hoang
  • Min Tseng
  • Wei-Jye Shu
Original Paper

Abstract

Thermophilic actinomycetes were isolated from sediment of the Chingshuei hot spring in north Taiwan, and the strain HS 45-1 was selected from colonies which formed distinct clear zones on agar plate with emulsified polyethylene succinate (PES). The film of PES disappeared within 6 days in liquid cultures at 50°C. The strain HS 45-1 was also able to degrade poly (ε-carpolactone) (PCL) and poly (3-hydroxybutyrate) (PHB) films completely within 6 days in liquid cultures. Basing on the results of phynotypic characteristics, phylogenetic studies and DNA-DNA hybridization, strain HS 45-1 should be assigned to Micorbispora rosea subsp. taiwanensis.

Keywords

Degradation Polyethylene succinate Thermophile Micorbispora rosea subsp. taiwanensis 

Abbreviations

PES

polyethylene succinate

PCL

poly (ε-carpolactone)

PHB

poly (3-hydroxybutyrate)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the Ministry of Economic Affairs, R. O. C. (project no. 93-EC-17-A-17-R7-0525). We also thank Mr. Y. K. Lin for assistance in samples collection.

References

  1. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1997) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230Google Scholar
  2. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  3. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  4. Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, USAGoogle Scholar
  5. Fields RD, Rodrigue F, Finn RK (1974) Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. J Appl Polym Science 18:3571–3576Google Scholar
  6. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322Google Scholar
  7. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  8. Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly-(L-lactide). J Gen Appl Microbiol 45:247–251CrossRefGoogle Scholar
  9. Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly (L-lactide)-Degrading Activity in Various Actinomycetes, Macromol. Biosci 2:420–428Google Scholar
  10. Jarerat A, Tokiwa Y (2003) Poly (L-lactide) degradation by Saccharothrix wayandensis. Biotechnol Lett 25:401–404CrossRefGoogle Scholar
  11. Jarerat A, Tokiwa Y (2003) Poly (L-lactide) degradation by Kibdelosporangium aridum. Biotechnol Lett 25:2035–2038CrossRefGoogle Scholar
  12. Kawamoto I, Oka T, Nara T (1981) Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 146:527–534Google Scholar
  13. Kelly KL (1966) Inter-Society Color Council–National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors. US Government Printing Office, Washington, DCGoogle Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120CrossRefGoogle Scholar
  15. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  16. Kohei N, Toshio T, Naoki A, Yoshiyuki K (2001) Purification and Characterization of an Extracellular Poly(L-Lactic Acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104–1. J Gen Appl Microbiol 67:345–353CrossRefGoogle Scholar
  17. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245CrossRefGoogle Scholar
  18. Minnikin DE, Alshamaony L, Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia, and related taxa by thin layer chromatographic analysis of␣whole-cell methanolysates. J Gen Microbiol 88:200–204Google Scholar
  19. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  20. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T (1999) Microbispora corallina sp. nov. a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 49:1761–1767Google Scholar
  21. Nishida H, Tokiwa Y (1993) Distribution of poly (3-hydroxy-Butyrate) and poly (ε-caprolactone) aerobic degrading microorganism in different environments. J␣Environ Polym Degrad 1:227–233CrossRefGoogle Scholar
  22. Pranamuda H, Tokiwa Y, Tanaka H (1995) Microbial degradation of an aliphatic polyester with a high melting point poly (tetramehtylene succinate). Appl Environ Microbiol 61:1828–1832Google Scholar
  23. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide Degradation by an Amycolatopsis sp. J Gen Appl Microbiol 63:1637–1640Google Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  25. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  26. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  27. Tansengco ML, Tokiwa Y (1998) Thermophilic microbial degradation of poly(ethylene succinate). World J Microbiol & Biotechnol 14:133–138CrossRefGoogle Scholar
  28. Tansengco ML, Dogma IJ Jr (1998) Comparative population study of aliphatic polyesters-degrading microorganisms at 50 °C. Chem Lett 1043–1044Google Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  30. Tokiwa Y, Iwamoto A, Koyama M, Kataka N, Nishida H (1992) Biological recycling of plastics containing ester bonds. Makromolekulare Chemic-Makromolecular Symposia 57:273–279Google Scholar
  31. Tokiwa Y, Pranamuda H (2001) Microbial degradation of aliphatic polyester. In: Doi Y, Steinbuchel A (eds) Biopolymers, Vol 3, Weinheimi Wiley-VCH pp 85–103Google Scholar
  32. Sanchez JG, Tsuchii A, Tokiwa Y (2000) Degradation of polycaprolactone at 50°C by a thermotolerant Aspergillus sp. Biotechnol Lett 22:849–853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Chemical and Material EngineeringTa-Hwa Institute of TechnologyHsinchuTaiwan, ROC
  2. 2.Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan, ROC

Personalised recommendations