, Volume 18, Issue 3, pp 333–342 | Cite as

Degradation of polyethylene succinate (PES) by a new thermophilic Microbispora strain

  • Kim-Chi Hoang
  • Min Tseng
  • Wei-Jye Shu
Original Paper


Thermophilic actinomycetes were isolated from sediment of the Chingshuei hot spring in north Taiwan, and the strain HS 45-1 was selected from colonies which formed distinct clear zones on agar plate with emulsified polyethylene succinate (PES). The film of PES disappeared within 6 days in liquid cultures at 50°C. The strain HS 45-1 was also able to degrade poly (ε-carpolactone) (PCL) and poly (3-hydroxybutyrate) (PHB) films completely within 6 days in liquid cultures. Basing on the results of phynotypic characteristics, phylogenetic studies and DNA-DNA hybridization, strain HS 45-1 should be assigned to Micorbispora rosea subsp. taiwanensis.


Degradation Polyethylene succinate Thermophile Micorbispora rosea subsp. taiwanensis 



polyethylene succinate


poly (ε-carpolactone)


poly (3-hydroxybutyrate)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Ministry of Economic Affairs, R. O. C. (project no. 93-EC-17-A-17-R7-0525). We also thank Mr. Y. K. Lin for assistance in samples collection.


  1. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1997) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230Google Scholar
  2. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  3. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  4. Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, USAGoogle Scholar
  5. Fields RD, Rodrigue F, Finn RK (1974) Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. J Appl Polym Science 18:3571–3576Google Scholar
  6. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322Google Scholar
  7. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  8. Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly-(L-lactide). J Gen Appl Microbiol 45:247–251CrossRefGoogle Scholar
  9. Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly (L-lactide)-Degrading Activity in Various Actinomycetes, Macromol. Biosci 2:420–428Google Scholar
  10. Jarerat A, Tokiwa Y (2003) Poly (L-lactide) degradation by Saccharothrix wayandensis. Biotechnol Lett 25:401–404CrossRefGoogle Scholar
  11. Jarerat A, Tokiwa Y (2003) Poly (L-lactide) degradation by Kibdelosporangium aridum. Biotechnol Lett 25:2035–2038CrossRefGoogle Scholar
  12. Kawamoto I, Oka T, Nara T (1981) Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 146:527–534Google Scholar
  13. Kelly KL (1966) Inter-Society Color Council–National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors. US Government Printing Office, Washington, DCGoogle Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120CrossRefGoogle Scholar
  15. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  16. Kohei N, Toshio T, Naoki A, Yoshiyuki K (2001) Purification and Characterization of an Extracellular Poly(L-Lactic Acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104–1. J Gen Appl Microbiol 67:345–353CrossRefGoogle Scholar
  17. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245CrossRefGoogle Scholar
  18. Minnikin DE, Alshamaony L, Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia, and related taxa by thin layer chromatographic analysis of␣whole-cell methanolysates. J Gen Microbiol 88:200–204Google Scholar
  19. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  20. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T (1999) Microbispora corallina sp. nov. a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 49:1761–1767Google Scholar
  21. Nishida H, Tokiwa Y (1993) Distribution of poly (3-hydroxy-Butyrate) and poly (ε-caprolactone) aerobic degrading microorganism in different environments. J␣Environ Polym Degrad 1:227–233CrossRefGoogle Scholar
  22. Pranamuda H, Tokiwa Y, Tanaka H (1995) Microbial degradation of an aliphatic polyester with a high melting point poly (tetramehtylene succinate). Appl Environ Microbiol 61:1828–1832Google Scholar
  23. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide Degradation by an Amycolatopsis sp. J Gen Appl Microbiol 63:1637–1640Google Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  25. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  26. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  27. Tansengco ML, Tokiwa Y (1998) Thermophilic microbial degradation of poly(ethylene succinate). World J Microbiol & Biotechnol 14:133–138CrossRefGoogle Scholar
  28. Tansengco ML, Dogma IJ Jr (1998) Comparative population study of aliphatic polyesters-degrading microorganisms at 50 °C. Chem Lett 1043–1044Google Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  30. Tokiwa Y, Iwamoto A, Koyama M, Kataka N, Nishida H (1992) Biological recycling of plastics containing ester bonds. Makromolekulare Chemic-Makromolecular Symposia 57:273–279Google Scholar
  31. Tokiwa Y, Pranamuda H (2001) Microbial degradation of aliphatic polyester. In: Doi Y, Steinbuchel A (eds) Biopolymers, Vol 3, Weinheimi Wiley-VCH pp 85–103Google Scholar
  32. Sanchez JG, Tsuchii A, Tokiwa Y (2000) Degradation of polycaprolactone at 50°C by a thermotolerant Aspergillus sp. Biotechnol Lett 22:849–853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Chemical and Material EngineeringTa-Hwa Institute of TechnologyHsinchuTaiwan, ROC
  2. 2.Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan, ROC

Personalised recommendations