Advertisement

Biodegradation

, Volume 18, Issue 1, pp 115–121 | Cite as

Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes

  • Zulfiqar Ali Raza
  • Asma Rehman
  • Muhammad Saleem Khan
  • Zafar M. KhalidEmail author
Article

Abstract

Biosurfactant production by Pseudomonas aeruginosa EBN-8 mutant was studied in shake flasks on separate wastes from canola, soybean and corn oil refineries. Of the substrates tested, canola oil refinery waste (COD=20 g l−1) supplemented with sodium nitrate (at COD/N=20) showed the best microbial growth (4.50 g l−1) and rhamnolipid production (8.50 g l−1), at 10 d of incubation with the specific growth rate of 0.316 h−1 and specific product yield of 0.597 g g−1 h. Its cell-free supernatant showed the critical micelle dilution (CMD) of 150 and surface tension (ST) of 28.5 mN m−1.

Keywords

biosurfactant emulsion Pseudomonas aeruginosa vegetable oil wastes yield factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad for funding for this research, Ch. Muhammad Akram, General Manager, Madni Ghee Mills, Faisalabad for providing the VORWs samples and Mr. Muhammad Afzal, Senior Scientist, NIBGE for his lab’s facilities.

References

  1. Abalos A, Maximo F, Manresa MA, Bastida J (2002) Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10 J. Chem. Technol. Biotechnol. 77:777–784CrossRefGoogle Scholar
  2. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes Langmuir 17: 1367–1371CrossRefGoogle Scholar
  3. Aiba S, Humphrey AE, Millis NF (1973) Biochemical Engineering Academic Press, New York pp. 75–106Google Scholar
  4. Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa BS2 from industrial wastes Biotechnol. Lett. 18:263–268CrossRefGoogle Scholar
  5. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock Antonie van Leeuwenhoek 85:1–8CrossRefPubMedGoogle Scholar
  6. Bushnell LD, Hass HF (1941) Utilization of certain hydrocarbons by microorganisms J. Bacteriol. 41:653–658Google Scholar
  7. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential Microbiol. Mol. Biol. Rev. 61:47–64PubMedGoogle Scholar
  8. Dubey K, Juwarkar A (2001) Distillery and crud whey wastes as viable alternative sources for biosurfactant production World J. Microbiol. Biotechnol. 17:61–69CrossRefGoogle Scholar
  9. Georgiou G, Nil SC, Sharma MM (1992) Surface-active compounds from microorganisms BioTechnol. 10:60–65CrossRefGoogle Scholar
  10. Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils J. Appl. Microbiol. 88:379–387CrossRefPubMedGoogle Scholar
  11. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044 Biotechnol. Bioeng. 81:316–322CrossRefPubMedGoogle Scholar
  12. Iqbal S, Khalid ZM, Malik KA (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa Lett. Appl. Microbiol. 21:176–179PubMedGoogle Scholar
  13. Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources J. Surf. Det. 2:237–241CrossRefGoogle Scholar
  14. Martinez-Moreno JM (1972) Carateristas fisico-quimius de alpechines. In: Fundamentos Fisico-Quimicos de la Tecnica Oleicola. Consejo Superior de Investigaciones Cientifial, MadridGoogle Scholar
  15. Mercade ME, Manresa MA (1994) The use of agroindustrial by-products for biosurfactant production J. Am. Oil Chem. Soc. 71:61–64Google Scholar
  16. Mercade ME, Manresa MA, Robert M, Espuny MJ, de Andes C, Guinea J (1993) Olive oil mill effluents (OOME). New substrate for biosurfactant production Biores. Technol. 43:1–6CrossRefGoogle Scholar
  17. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials Biotechnol. Prog. 18:1277–1281CrossRefPubMedGoogle Scholar
  18. Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1 Biotechnol. Lett. 11:871–874CrossRefGoogle Scholar
  19. Sim L, Ward OP, Li Z-Y (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 19:232–238CrossRefPubMedGoogle Scholar
  20. Vipulanandan C, Ren X (2002) Enhanced solubility and biodegradation of naphthalene with biosurfactant J. Environ. Eng. 126:629–634CrossRefGoogle Scholar
  21. Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes Appl. Environ. Microbiol. 61:2247–2251Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Zulfiqar Ali Raza
    • 1
    • 2
  • Asma Rehman
    • 2
  • Muhammad Saleem Khan
    • 1
  • Zafar M. Khalid
    • 2
    Email author
  1. 1.Polymer Chemistry Laboratory, National Centre of Excellence in Physical ChemistryUniversity of PeshawarPeshawarPakistan
  2. 2.Environmental Biotechnology DivisionNational Institute for Biotechnology & Genetic EngineeringFaisalabadPakistan

Personalised recommendations