, Volume 17, Issue 6, pp 571–576 | Cite as

Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand

  • James T. PriestleyEmail author
  • Nicholas V. Coleman
  • Trevor Duxbury


Rhodococcus strain DN22 grows on the nitramine explosive RDX as a sole nitrogen source, and is potentially useful for bioremediation of explosives-contaminated soil. In order for strain DN22 to be effectively applied in situ, inoculum cells must reach zones of RDX contamination via passive transport, a process that is difficult to predict at field-scale. We examined the effect of growth conditions on the transport of DN22 cells through sand columns, using chemostat-grown cultures. Strain DN22 formed smaller coccoid cells at low dilution rate (0.02 h−1) and larger rods at high dilution rate (0.1 h−1). Under all nutrient limitation conditions studied, smaller cells grown at low dilution rate were retained more strongly by sand columns than larger cells grown at high dilution rate. At a dilution rate of 0.05, cells from nitrate-limited cultures were retained more strongly than cells from RDX-limited or succinate-limited cultures. Breakthrough concentrations (C/C0) from sand columns ranged from 0.04 (nitrate-limited, D=0.02 h−1) to 0.98 (succinate-limited, D=0.1 h−1). The observed strong effect of culture conditions on transport of DN22 cells emphasizes the importance of physiology studies in guiding the development of bioremediation technologies.


bacterial transport biodegradation bioremediation cell morphology growth rate RDX 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allpress JD, Gowland PC, (1999) Biodegradation of chlorinated paraffins and long-chain chloroalkanes by Rhodococcus sp. s45-1 Int. Biodeterior. Biodegrad. 43: 173–179CrossRefGoogle Scholar
  2. Arino S, Marchal R, Vandecasteele JP, (1998) Production of new extracellular glycolipids by a strain of Cellulomonas cellulans (oerskovia xanthineolytica) and their structural characterization Can. J. Microbiol. 44: 238–243CrossRefGoogle Scholar
  3. Armstrong S, Patel TR, (1993) 1,3,5-trihydroxybenzene biodegradation by Rhodococcus-sp. bpg-8 Can. J. Microbiol. 39: 175–179PubMedGoogle Scholar
  4. Axtell C, Johnston CG, Bumpus JA, (2000) Bioremediation of soil contaminated with explosives at the naval weapons station yorktown Soil Sediment Contam. 9: 537–548CrossRefGoogle Scholar
  5. Bai GY, Brusseau ML, Miller RM, (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil J. Contam. Hydrol. 25: 157–170CrossRefGoogle Scholar
  6. Binks PR, Nicklin S, Bruce NC, (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia pb1 Appl. Environ. Microbiol. 61: 1318–1322PubMedGoogle Scholar
  7. Burton DT, Turley SD, Peters GT, (1994) The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the fathead minnow (pimephales-promelas) Chemosphere 29:567–579CrossRefGoogle Scholar
  8. Chen G, Strevett KA, (2001) Impact of surface thermodynamics on bacterial transport Environ. Microbiol. 3: 237–245CrossRefPubMedGoogle Scholar
  9. Coleman NV, Nelson DR, Duxbury T, (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (rdx) as a nitrogen source by a Rhodococcus sp., strain DN22 Soil Biol. Biochem. 30: 1159–1167CrossRefGoogle Scholar
  10. Coleman NV, Spain JC, Duxbury T, (2002) Evidence that rdx biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450 J. Appl. Microbiol. 93: 463–472CrossRefPubMedGoogle Scholar
  11. Dillon JK, Fuerst JA, Hayward AC, Davis GHG, (1986) A comparison of 5 methods for assaying bacterial hydrophobicity J. Microbiol. Methods 6: 13–19CrossRefGoogle Scholar
  12. Finnerty WR, (1992) The biology and genetics of the genus Rhodococcus Annu. Rev. Microbiol. 46: 193–218CrossRefPubMedGoogle Scholar
  13. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J, (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22 Appl. Environ. Microbiol. 68: 166–172CrossRefPubMedGoogle Scholar
  14. Fuhrmann C, Soedarmanto I, Lammler C, (1997) Studies on the rod-coccus life cycle of Rhodococcus equi J. Vet. Med. B 44: 287–294Google Scholar
  15. Gannon JT, Manilal VB, Alexander M, (1991) Relationship between cell-surface properties and transport of bacteria through soil Appl. Environ. Microbiol. 57: 190–193PubMedGoogle Scholar
  16. Gilan I, Hadar Y, Sivan A, (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber Appl. Microbiol. Biotechnol. 65:97–104PubMedGoogle Scholar
  17. Hawari J, 2000 Biodegradation of RDX and HMX: from basic research to field application In: JC Spain, Hughes JB, Knackmuss H, (Eds) Biodegradation of RDX and HMX: From Basic Research to Field Application CRC Press LLC Boca Raton (pp. 277–310)Google Scholar
  18. Heise S, Gust G, (1999) Influence of the physiological status of bacteria on their transport into permeable sediments Mar. Ecol-Prog. Ser. 190: 141–153Google Scholar
  19. Horn MM, Garbe LA, Tressl R, Adrian L, Gorisch H, (2003) Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain dtb Arch. Microbiol. 179: 234–241PubMedGoogle Scholar
  20. Huysman F, Verstraete W, (1993) Water-facilitated transport of bacteria in unsaturated soil columns – influence of cell-surface hydrophobicity and soil properties Soil Biol. Biochem. 25: 83–90CrossRefGoogle Scholar
  21. Iwabuchi N, Sunairi M, Anzai H, Morisaki H, Nakajima M, (2003) Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in rhodococcus Colloid Surface B 30: 51–60CrossRefGoogle Scholar
  22. Jannasch HW, (1969) Estimations of bacterial growth rates in natural waters J. Bacteriol. 99: 156–160PubMedGoogle Scholar
  23. Johnson WP, Martin MJ, Gross MJ, Logan BE, (1996) Facilitation of bacterial transport through porous media by changes in solution and surface properties Colloid Surface A 107: 263–271CrossRefGoogle Scholar
  24. Kaplan AS, CF Berghout, A Peczenik, (1965) Human intoxication from RDX Arch. Environ. Health 10:877PubMedGoogle Scholar
  25. Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V, (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions J. Biotechnol. 13: 257–266CrossRefPubMedGoogle Scholar
  26. Lang S, Philp JC, (1998) Surface-active lipids in Rhodococci Anton. Leeuw. Int. J. G. 74: 59–70CrossRefGoogle Scholar
  27. Li Q, Logan BE, (1999) Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants Water Res. 33: 1090–1100CrossRefGoogle Scholar
  28. Luscombe BM, Gray TRG, (1971) Effect of varying growth rate on the morphology of arthrobacter J. Gen. Microbiol. 69: 433–434Google Scholar
  29. Luscombe BM, Gray TRG, (1974) Characteristics of Arthrobacter grown in continuous culture J. Gen. Microbiol. 82: 213–222Google Scholar
  30. Macleod FA, Lappinscott HM, Costerton JW, (1988) Plugging of a model rock system by using starved bacteria Appl. Environ. Microbiol. 54: 1365–1372PubMedGoogle Scholar
  31. Miles AA, Misra SS, (1938) The estimation of the bactericidal power of blood J. Hyg-Camb. 38: 732–736Google Scholar
  32. Owens JD, Keddie RM, (1969) The nitrogen nutrition of soil and herbage cornyeform bacteria J. Appl. Biotechnol. 32: 338–347Google Scholar
  33. Parales RE, Harwood CS, (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules Curr. Opin. Microbiol. 5: 266–273CrossRefPubMedGoogle Scholar
  34. Powelson DK, Mills AL, (1998) Water saturation and surfactant effects on bacterial transport in sand columns Soil Sci. 163: 694–704CrossRefGoogle Scholar
  35. Prieto MB, Hidalgo A, Rodriguez-Fernandez C, Serra JL, Llama MJ, (2002) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis upv-1 immobilized in an air-stirred reactor with clarifier Appl. Microbiol. Biotechnol. 58: 853–859CrossRefPubMedGoogle Scholar
  36. Ramsey B, McCarthy J, Guerra-Santos L, Kappeli O, Fiechter A. (1988) Biosurfactant production and diauxic growth of Rhododcoccus aurantiacus when using n-alkanes as the carbon source Can. J. Microbiol. 34: 1209–1212Google Scholar
  37. Schafer A, Harms H, Zehnder AJB, (1996) Biodegradation of 4-nitroanisole by two Rhodococcus spp. Biodegradation 7: 249–255CrossRefPubMedGoogle Scholar
  38. Schneider NR, Bradley SL, Andersen ME, (1977) Cyclotrimethylenetrinitramine: Distribution and metabolism in the rat and the miniature swine Toxicol. Appl. Pharmacol. 39: 531–541CrossRefPubMedGoogle Scholar
  39. Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC, (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous Appl. Environ. Microbiol. 68: 4764–4771CrossRefPubMedGoogle Scholar
  40. Sharma SL, Pant A, (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus sp. Biodegradation 11: 289–294CrossRefPubMedGoogle Scholar
  41. Shen CF, Guiot SR, Thiboutot S, Ampleman G, Hawari J, (1997) Fate of explosives and their metabolites in bioslurry treatment processes Biodegradation 8: 339–347CrossRefPubMedGoogle Scholar
  42. Sheremata TW, Halasz A, Paquet L, Thiboutot S, Ampleman G, Hawari J, (2001) The fate of the cyclic nitramine explosive RDX in natural soil Environ. Sci. Technol. 35: 1037–1040CrossRefPubMedGoogle Scholar
  43. Singer MEV, Finnerty WR, (1990) Physiology of biosurfactant synthesis by Rhodococcus species h13-a Can. J. Microbiol. 36: 741–745CrossRefGoogle Scholar
  44. Singh J, Comfort SD, Hundal LS, Shea PJ, (1998) Long-term RDX sorption and fate in soil J. Environ. Qual. 27: 572–577CrossRefGoogle Scholar
  45. Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P, (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis e1 Appl. Environ. Microbiol. 69: 7019–7027CrossRefPubMedGoogle Scholar
  46. Stratton HM, Brooks PR, Griffiths PC, Seviour RJ, (2002) Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activated sludge foam J. Ind. Microbiol. Biotechnol. 28: 264–267CrossRefPubMedGoogle Scholar
  47. Streger SH, Vainberg S, Dong HL, Hatzinger PB, (2002) Enhancing transport of hydrogenophaga flava env735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether Appl. Environ. Microbiol. 68: 5571–5579PubMedCrossRefGoogle Scholar
  48. Tempest DW, 1970 The contiuous culture of microorganisms: 1. Theory of the chemostat. In: Book J, R Norris, DW Ribbons (Eds). The Contiuous Culture of Microorganisms: 1. Theory of the Chemostat Vol 2. Academic Press London, 259–276Google Scholar
  49. Weiss TH, Mills AL, Hornberger GM, Herman JS, (1995) Effect of bacterial-cell shape on transport of bacteria in porous-media Environ. Sci. Technol. 29: 1737–1740Google Scholar
  50. Yoon JH, Kang SS, Cho YG, Lee ST, Kho YH, Kim CJ, Park YH, (2000) Rhodococcus pyridinovorans sp nov., a pyridine-degrading bacterium Int. J. Syst. Evol. Microbiol. 50: 2173–2180PubMedGoogle Scholar
  51. Zhao JS, Spain J, Hawari M, (2003) Phylogenetic and metabolic diversity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source FEMS Microbiol. Ecol. 46: 189–196CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • James T. Priestley
    • 1
    Email author
  • Nicholas V. Coleman
    • 1
  • Trevor Duxbury
    • 1
  1. 1.School of Molecular and Microbial BiosciencesUniversity of SydneyMaze CrescentAustralia

Personalised recommendations