, Volume 17, Issue 3, pp 251–261 | Cite as

Bioremediation by Composting of Heavy Oil Refinery Sludge in Semiarid Conditions

  • José A. Marín
  • José L. MorenoEmail author
  • Teresa Hernández
  • Carlos García


The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.


bioremediation composting ecotoxicity oil sludge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M 1994Biodegradation and BioremediationAcademic PressSan Diego, USA302Google Scholar
  2. Atlas, RM 1991Microbial hydrocarbons degradation bioremediation of oil spillsJ. Chem. Technol. Biotechnol.52149156CrossRefGoogle Scholar
  3. Baheri, H, Meysami, P 2001Feasibility of fungi bioaugmentation in composting a flare pit soilJ. Hazard. Mater.89279286CrossRefGoogle Scholar
  4. Beaudin, N, Caron, RF, Legros, R, Ramsay, J, Ramsay, B 1999Identification of key factors affecting composting of weathered hydrocarbons-contaminated soilBiodegradation10127133CrossRefGoogle Scholar
  5. Bengtsson, A, Quednau, M, Haska, G, Nilzen, P, Persson, A 1998Composting of oily sludges-degradation, stabilized residues, volatiles and microbial activityWaste Manage. Res.3273284Google Scholar
  6. Bollag, JM, Bollag, WB 1995Soil contamination and the feasibility of biological remediationSkipper, HDTurco, RF eds. Bioremediation: Science and ApplicationSSSA Special Publication13. Madison, Wisconsin113Google Scholar
  7. Brink, RH, Dubach, JP, Lynch, DL 1960Measurement of carbohydrates in soil hydrolizates with anthroneSoil Sci.89157166Google Scholar
  8. Britton, LN 1984 Microbial degradation of aliphatic hydrocarbonsGibson, DT eds. Microbial Degradation of Organic Compounds Marcel Dekker New York89129Google Scholar
  9. C.E.C.1986Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agricultureOfficial J. Eur. CommunitiesL181612Google Scholar
  10. EPA, (1996) Total recoverable petroleum hydrocarbons by infrared spectrophotometry. EPA method no 8440Google Scholar
  11. Epstein, E 1997The Science of CompostingTechnomic Publishing Co.LancasterGoogle Scholar
  12. Eweis, JB, Ergas, SJ, Chang, DP, Schroeder, ED 1999Biodegradación de compuestos concretos Principios de BiorrecuperaciónMc Graw HillSpain131147Google Scholar
  13. García, C, Hernández, T, Costa, F 1991The influence of composting on the fertilizing value of an aerobic sewage sludgePlant Soil136269272CrossRefGoogle Scholar
  14. García, C, Hernández, T, Costa, F, Ayuso, M 1992Evaluation of maturity of municipal waste compost using simple chemical parametersComm. Soil Sci. Plant Anal.2315011512CrossRefGoogle Scholar
  15. Johnson, CR, Scow, KM 1999Effect of nitrogen and phosphorus addition on phenanthrene biodegradation in four soilsBiodegradation104350CrossRefGoogle Scholar
  16. Kapanen, A, Itävaara, M 2001Ecotoxicity test for compost applicationsEcotox. Environ. Safe.49116CrossRefGoogle Scholar
  17. Kirchmann, H, Ewnetu, W 1998Biodegradation of petroleum-based oil wastes trough compostingBiodegradation9151156CrossRefGoogle Scholar
  18. Margesin, A, Zimmerbauer, A, Schinner, F. 1999Monitoring of bioremediation by soil biological activitiesChemosphere40339346CrossRefGoogle Scholar
  19. Marín, J.A., 2004. Biorremediación, mediante técnicas biológicas, de hidrocarburos contenidos en lodos de refinería. Experiencias en clima semiárido. PhD Thesis. University of Murcia, Spain, 245 ppGoogle Scholar
  20. Murphy, J, Riley, JP 1962A modified single solution method for determination of phosphate in natural wastesAnal. Chem. Acta23136CrossRefGoogle Scholar
  21. Nannipieri, P, Greco, S, Ceccanti, B 1990Ecological significance of the biological activity in soilBollag, JMStozky, G eds. Soil BiochemestryMarcel DekkerNew York 293353Google Scholar
  22. Oolman, T, Castaldi, FJ, Beherens, GP, Owen, M 1992Biotreat oily refinery wastesHydrocarb. Process.716769Google Scholar
  23. Overcash MR & Pal D (1979) Design of land treatment system for industrial wastes: theory and practice. Ann. Arbor Sci. 159–219Google Scholar
  24. Persson, NA, Welander, TG 1994Biotreatment of petroleum hydrocarbons-containing sludges by landfarmingHinchee, RAAlleman, BCHoeppel, REMiller, RN eds. Hydrocarbon BiorremediationLewis PublishersBoca Raton, Florida335342Google Scholar
  25. Saviozzi, A., Levi-Minzi, R, Riffaldi, R, Vanni, G 1997Laboratory studies on the application of wheat straw and pig slurry to soil ant the resulting environmental implicationsAgric. Ecosyst. Environ.613543CrossRefGoogle Scholar
  26. Singer, ME, Finnerty, WR 1984Microbial metabolism of straight-chain and branched alkanesAtlas, RM eds. Petroleum MicrobiologyMacmillan New York159Google Scholar
  27. Solano-Serena, F, Marchal, R, Ropars, M, Lebeaut, JM, Vandecasteele, JP 1999Biodegradation of gasoline: kinetics, mass balance and fate of individual hydrocarbonsJ. Appl. Microbiol.8610081016CrossRefGoogle Scholar
  28. Tabuchi, K, Matu-ura, K, Kawakami, S, Shiratori, T, Saitoh, T 1998Remediation and recycling of the soil contaminated with petroleum hydrocarbonMetall. Rev. MMIJ11425Google Scholar
  29. Tang, JC, Kanamori, T, Inoue, Y, Yasuta, T, Yoshida, S., Katayama, A 2004Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile methodProcess Biochem.3919992006CrossRefGoogle Scholar
  30. Tseng, DY, Chalmers, JJ, Tuovinen, OH 1996ATP measurement in compostCompost Sci. Util.4617Google Scholar
  31. Williams, RT, Keehan, RK 1993Hazardous and industrial waste compostingHoitink, HAKeener, HM eds. Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization AspectsOhio State University, Renaissance Publication Worthington, USA363382Google Scholar
  32. Wilson, SC, Jones, KC 1993Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs)Environ. Pollut.81229249CrossRefGoogle Scholar
  33. Zhou, E, Crawford, RL 1995Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soilBiodegradation6127140CrossRefGoogle Scholar
  34. Zucconi, F, Monace, A, Forte, M 1985Phitotoxins during the satabilition of organic matterGasser, JKR eds. Composting of Agricultural and Other WastesElsevier App Sci PublisherUKGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • José A. Marín
    • 1
  • José L. Moreno
    • 1
    Email author
  • Teresa Hernández
    • 1
  • Carlos García
    • 1
  1. 1.Department of Soil and Water Conservation and Waste ManagementCEBAS-CSICEspinardoSpain

Personalised recommendations