Advertisement

Biodegradation

, Volume 17, Issue 4, pp 293–302 | Cite as

Pyrene mineralization capacity increases with compost maturity

  • Andreas Haderlein
  • Robert Legros
  • Bruce A. RamsayEmail author
Article

Abstract

Experiments were conducted to determine the effects of composting or simple addition of compost to the mineralization of n-hexadecane, pyrene and benzo(a)pyrene in soil. Soil (contaminated or clean) was composted with maple leaves and alfalfa. Samples from different composting phases were spiked with radiolabeled and cold n-hexadecane, pyrene or benzo(a)pyrene, placed in aerated microcosms at different temperatures, and monitored for mineralization. It was determined that neither composting nor the addition of compost had any effect on n-alkane or benzo(a)pyrene mineralization. In contrast, the pyrene mineralization rate increased dramatically with the amount of time that soil had been composted. Highest pyrene mineralization rates and extents (more than 60% after 20 days) were obtained when pyrene was in contact with composted soil from the curing stage. Neither thermophiles (55 °C) nor fungi were responsible for pyrene mineralization.

Keywords

compost composting PAH polyaromatic hydrocarbons pyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N Beaudin, RF Caron, R Legros, J Ramsay, L Lawlor and B Ramsay, Cocomposting of weathered hydrocarbon-contaminated soil. Compost Sci. Utiliz. 4 (1996) 37-45Google Scholar
  2. N Beaudin, RF Caron, R Legros, J Ramsay and B Ramsay, Identification of the key factors affecting composting of a weathered hydrocarbon-contaminated soil. Biodegradation 10 (1999) 127-133CrossRefGoogle Scholar
  3. S Belkin, M Stieber, A Tiehm, FH Frimmel, A Abeliovich, Werner and S Ulitzur, Toxicity and genotoxicity enhancement during polycyclic aromatic hydrocarbons biodegradation. Environ .Toxicol.Water Qual. 9 (1994) 303-309CrossRefGoogle Scholar
  4. DF Berry and SA Boyd, Decontamination of soil through enhanced formation of bound residues Environ. Sci. Technol. 19 (1985) 1132-1133CrossRefGoogle Scholar
  5. BW Bogan and WR Sullivan, Physiochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52 (2003) 1717-1726CrossRefPubMedGoogle Scholar
  6. CE Cerniglia, Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30 (1984) 31-71PubMedCrossRefGoogle Scholar
  7. CH Chaîneau, J-L Morel and J Outdot, Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. Environ. Sci. Technol. 29 (1995) 1615-1621CrossRefGoogle Scholar
  8. C Ciavatta, M Govi, L Vittori Antisari and P Sequi, Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. J. Chromatogr. 509 (1990) 141-146CrossRefGoogle Scholar
  9. SL Crawford, GE Johnson and FE Goetz, The potential for bioremediation of soils containing PAHs by composting. Compost Sci.Utiliz. 1 (1993) 41-47Google Scholar
  10. G Daun, H Lenke, M Reuss and H-J Knackmuss, Biological treatment of TNT-contaminated soil 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ. Sci. Technol. 32 (1998) 1956-1963CrossRefGoogle Scholar
  11. MA Dooley, K Taylor and B Allen, Composting of herbicide-contaminated soil. In: RH Hinchee, EJ Brockman and CM Vogel (eds.) Microbial Processes for Bioremediation. Columbus, Richland: Battelle Press (1995) pp. 199-207Google Scholar
  12. A Eschenbach, R Wienberg and B Mahro, Fate and stability of nonextracatble residues of [14C]PAH in contaminated soils under environmental stress conditions. Environ. Sci. Technol. 32 (1998) 2585-2590CrossRefGoogle Scholar
  13. CW Greer, J Hawari and R Samson, Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Arch. Microbiol. 154 (1990) 317-322CrossRefPubMedGoogle Scholar
  14. A Haderlein, M-C Aly Hassan, R Legros and B Ramsay, Use of aerated microcosms in mineralization studies. Biodegradation 10 (1999) 437-442CrossRefPubMedGoogle Scholar
  15. A Haderlein, R Legros and B Ramsay, Enhancing pyrene mineralization in contaminated soil by the addition of composted soil or humic acids. Appl. Microbiol. Biotechnol. 56 (2001) 555-559CrossRefPubMedGoogle Scholar
  16. JF Joyce, C Sato, R Cardeans and RY Surampalli, Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste. Water Environ. Res. 70 (1998) 356-361CrossRefGoogle Scholar
  17. M Kästner, S Lotter, J Heerenklage, M Breuer-Jammali, R Stegmann and B Mahro, Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Appl. Microbiol. Biotechnol. 43 (1995) 1128-1135PubMedCrossRefGoogle Scholar
  18. M Kästner and B Mahro, Microbial degradation of polycyclic␣aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl. Microbiol. Biotechnol. 44 (1996) 668-675PubMedCrossRefGoogle Scholar
  19. Y Laor, PF Strom and WJ Farmer, Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Res. 33 (1999) 1719-1729CrossRefGoogle Scholar
  20. H Lenke, J Warrelmann, G Daun, K Hund, U Sieglen, U Walter and H-J Knackmuss, Biological treatment of TNT-contaminated soil 2. Biologically induced immobilization of the contaminants and full-scale application. Environ. Sci.Technol. 32 (1998) 1964-1971CrossRefGoogle Scholar
  21. R Martens, Concentrations and microbial mineralization of four to six ring polycyclic aromatic hydrocarbons in composted municipal waste. Chemosphere 11 (1982) 761-770CrossRefGoogle Scholar
  22. MJ McFarland, XJ Qui, JL Sims, ME Randolph and RC Sims, Remediation of petroleum impacted soils in fungal compost bioreactors. Water Sci. Technol. 25 (1992) 197-206Google Scholar
  23. J Oudot, P Fusey, DE Abdelouahid, S Haloui and MF Roquebert, Capacités dégradatives de bactéries et de champignons isolés dȁ9un sol contaminé par un fuel. Can. J. Microbiol. 33 (1987) 232-243CrossRefGoogle Scholar
  24. CL Potter, JA Glaser, LW Chang, JR Meier, JA Dosani and RF Herrmann, Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions. Environ. Sci. Technol. 33 (1999) 1717-1725CrossRefGoogle Scholar
  25. X Qiu and MJ McFarland, Bound residue formation in PAH contaminated soil composting using phanerochaete chrysosporium. Hazard. Wastes Hazard. Mater. 8 (1991) 115-125Google Scholar
  26. J Ramsay, H Li, RS Brown and B Ramsay, Naphthalene and anthracene mineralization coupled to oxygen, nitrate, Fe (III) and sulphate reduction in a mixed microbial population. Biodegradation 14 (2003) 321-329CrossRefPubMedGoogle Scholar
  27. SH Rhodes and PC Peck, Composting for remediation of soil contaminated with pharmaceutical residues. In: RE Hinchee and RE Hoeppel (eds.) Bioremediation of Recalcitrant. Columbus, Richland: Organics Battelle Press (1995) pp. 341-348Google Scholar
  28. F Roch and M Alexander, Inability of bacteria to degrade low concentrations of toluene in water. Environ. Toxicol. Chem. 16 (1997) 1377-1383CrossRefGoogle Scholar
  29. F Seibel, S Heidenreich and FH Frimmel, Interaction of humic substances and polycyclic aromatic hydrocarbons (PAHs) during the biodegradation of PAHs. Acta Hydrochim. Hydrobiol. 24 (1996) 260-266CrossRefGoogle Scholar
  30. KT Semple and TR Fermor, Composting systems for the bioremediation of chlorophenol-contaminated land. In: RE Hinchee, EJ Brockman and CM Vogel (eds.) Microbial Processes for Bioremediation. Columbus, Richland: Battelle Press (1995) pp. 93-100Google Scholar
  31. LE Sverdrup, T Nielsen and PH Krogh, Soil ecotoxicity of aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ. Sci. Technol. 36 (2002) 2429-2435CrossRefPubMedGoogle Scholar
  32. A Tiehm and C Fritzsche, Utilization of solubilized and␣crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl. Microbiol. Biotechnol. 42 (1995) 964-968CrossRefGoogle Scholar
  33. R Valo and M Salkinoja-Salonen, Bioreclamation of chlorophenol-contaminated soil by composting. Appl. Microbiol. Biotechnol. 25 (1986) 68-75CrossRefGoogle Scholar
  34. RT Williams and CA Mayler, Bioremediation using composting. BioCycle November 31 (1990) 78-81Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Andreas Haderlein
    • 1
  • Robert Legros
    • 1
  • Bruce A. Ramsay
    • 2
    Email author
  1. 1.Department of Chemical EngineeringÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Polyferm Canada Inc.OntarioCanada

Personalised recommendations