Advertisement

Biodegradation

, Volume 17, Issue 1, pp 1–8 | Cite as

Predominance of Char Sorption over Substrate Concentration and Soil pH in Influencing Biodegradation of Benzonitrile

  • Ping Zhang
  • Guangyao ShengEmail author
  • Yucheng Feng
  • David M. Miller
Article

Abstract

Incomplete combustion of field crop residues results in the production of char, a material rich in charcoal-type substances. Consequently, char is an effective adsorbent of organic compounds and when incorporated into soil may adsorb soil-applied pesticides, thereby altering their susceptibility to biodegradation. We investigated the relative importance of char, soil pH and initial substrate concentration in biodegradation of pesticides in soils by measuring the biodegradation of benzonitrile in soil as a function of soil char content (0% and 1% by weight), initial benzonitrile concentration (0.1, 1.06, and 10.2 mg l−1) and soil pH (5.2, 6.9 and 8.5). Preliminary experiments revealed that wheat straw char had a much greater benzonitrile sorption capacity than did soil to which the char was added. The extent of benzonitrile degradation decreased as initial benzonitrile concentration increased in both buffer solution and soil slurry. In contrast, the degradation increased as initial benzonitrile concentration increased in char-amended slurry. In un-amended soil slurry, the benzonitrile degradation was lower at pH 5.2 than at pH 6.9 or 8.5, but in char-amended soil slurry the degradation was not affected by pH, again presumably due to adsorption of benzonitrile by the char. Adsorption by soil char appears to be more important than either initial substrate concentration or soil pH in controlling benzonitrile degradation in char-amended soil slurry. The presence of crop residue-derived chars may alter pesticide degradation patterns normally observed in soils and thus significantly affect their environmental fate.

Keywords

biodegradation pH soil char sorption effect substrate concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bending, GD, Lincoln, SD, Sørensen, SR, Morgan, JAW, Aamand, J, Walker, A 2003In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pHAppl. Environ. Microbiol.69827834CrossRefGoogle Scholar
  2. Boethling, RS, Alexander, M 1979Effect of concentration of organic chemicals on their biodegradation by natural microbial communitiesAppl. Environ. Microbiol.3712111216Google Scholar
  3. Feng, Y, Park, J-H, Voice, TC, Boyd, SA 2000Bioavailability of soil-sorbed biphenyl to bacteriaEnviron. Sci. Technol.3419771984CrossRefGoogle Scholar
  4. Guerin, WF, Boyd, SA 1992Differential bioavailability of soil-sorbed naphthalene to two bacterial speciesAppl. Environ. Microbiol.5811421152Google Scholar
  5. Hilton, HW, Yuen, QH 1963Adsorption of several pre-emergence herbicides by Hawaiian sugar cane soilsJ. Agric. Food. Chem.11230234CrossRefGoogle Scholar
  6. Houot, S, Topp, E, Yassir, A, Soulas, G 2000Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soilsSoil. Biol. Biochem.32615625CrossRefGoogle Scholar
  7. Lahlou, M, Ortega-Calvo, JJ 1999Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractionsEnviron. Toxicol. Chem.1827292735CrossRefGoogle Scholar
  8. Leahy, JG, Colwell, RR 1990Microbial degradation of hydrocarbons in the environmentMicrobiol. Rev.54305315Google Scholar
  9. Nawaz, MS, Franklin, W, Campbell, WL, Heinze, TM, Cerniglia, CE 1991Metabolism of acrylonitrile by Klebsiella pneumoniaeArch. Microbiol.156231238CrossRefGoogle Scholar
  10. Nawaz, MS, Heinze, TM, Cerniglia, CE 1992Metabolism of benzonitrile and butyronitrile by Klebsiella pneumoniaeAppl. Environ. Microbiol.582731Google Scholar
  11. Ogram, AV, Jessup, RE, Ou, LT, Rao, PSC 1985Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soilAppl. Environ. Microbiol.49582587Google Scholar
  12. Park, J-H, Zhao, X, Voice, TC 2001Biodegradation of non-desorbable naphthalene in soilsEnviron. Sci. Technol.3527342740CrossRefGoogle Scholar
  13. Park, J-H, Zhao, X, Voice, TC 2002Development of a kinetic basis for bioavailability of sorbed naphthalene in soil slurriesWater Res.3616201628Google Scholar
  14. Rubin, HE, Subba-Rao, RV, Alexander, M 1982Rates of mineralization of trace concentrations of aromatic compounds in lake water and sewage samplesAppl. Environ. Microbiol.4311331138Google Scholar
  15. Rutgers, M, Bommel, SV, Breure, AM, Andel, JGV, Duetz, WA 1998Effect of pH on the toxicity and biodegradation of pentachlorophenol by sphingomonas sp. Strain P5 in nutrient cultureEnviron. Toxicol. Chem.17792797Google Scholar
  16. Scow, KM, Simkins, S, Alexander, M 1986Kinetics of mineralization of organic compounds at low concentrations in soilAppl. Environ. Microbiol.5110281035Google Scholar
  17. Simkins, S, Alexander, M 1984Models for mineralization kinetics with the variables of substrate concentration and population densityAppl. Environ. Microbiol.4712991366Google Scholar
  18. Stanier, R, Palleroni, N, Doudoroff, M 1966The aerobic pseudomonads: A taxonomic studyJ. Gen. Microbiol.43159271Google Scholar
  19. Swindoll, CM, Aelion, CM, Pfaender, FK 1988Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communitiesAppl. Environ. Microbiol.54212217Google Scholar
  20. Wang, YS, Subba-Rao, RV, Alexander, M 1984Effect of substrate concentration and organic and inorganic compounds on the occurrence and rate of mineralization and cometabolismAppl. Environ. Microbiol.4711951200Google Scholar
  21. Weir, SC, Dupuis, SP, Providenti, MA, Lee, H, Trevors, JT 1995Nutrient-enhanced survival of and phenanthrene mineralization by alginate-encapsulated and free Pseudomonas sp. UG14Lr cells in creosote-contaminated soil slurriesAppl. Microbiol. Biotechnol.43946951CrossRefGoogle Scholar
  22. Wolin, EA, Wolin, MJ, Wolfe, RS 1963Formation of methane by bacterial extractsJ. Biol. Chem.23828822886Google Scholar
  23. Yang, Y, Sheng, G 2003aEnhanced pesticide sorption by soils containing particulate matter from crop residue burnsEnviron. Sci. Technol.3736353639Google Scholar
  24. Yang, Y, Sheng, G 2003bPesticide adsorptivity of aged particulate matter arising from crop residue burnsJ. Agric. Food. Chem.5150475051Google Scholar
  25. Zhang, P, Sheng, G, Wolf, DC, Feng, Y 2004Reduced biodegradation of benzonitrile in soil containing wheat residue-derived ashJ. Environ. Qual.33868872Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ping Zhang
    • 1
  • Guangyao Sheng
    • 1
    Email author
  • Yucheng Feng
    • 2
  • David M. Miller
    • 1
  1. 1.Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas FayettevilleUSA
  2. 2.Department of Agronomy and SoilsAuburn UniversityAuburnUSA

Personalised recommendations