, Volume 16, Issue 6, pp 581–589 | Cite as

Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1

  • Nirmali Saikia
  • Subrata K. Das
  • Bharat K. C. Patel
  • Ram Niwas
  • Aqbal Singh
  • Madhuban Gopal


β-Cyfluthrin [α-cyano-4-fluoro-3-phenoxybenzyl-3(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate] pesticide has been in agricultural use in the recent years for controlling Lepidopteran pests affecting solanaceous crops. The extensive use of synthetic pyrethroids like β-cyfluthrin has resulted in wide spread environmental contamination. The purpose of this study was to isolate bacteria from soil and to determine their ability to degrade β-cyfluthrin and identify the intermediates in culture broth using spectroscopy. An aerobic bacterium capable of degrading β-cyfluthrin was isolated by enrichment culture. The 16S ribosomal DNA sequence of the isolate (strain S1) had 100% identity to the sequence from Pseudomonas stutzeri. Finally products formed during degradation of β-cyfluthrin have been identified as α-cyano-4-fluoro-3-phenoxybenzyl-3(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate (M.W. 341); 4-fluoro-3-phenoxy-α-cyanobenzyl alcohol (M.W. 243) and 3(2,2-dichlorovinyl)-2,2-dimethyl cyclopropanecarboxylic acid (M.W. 208).


biodegradation β-cyfluthrin pseudomonas stutzeri synthetic pyrethroid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res.2533893402CrossRefPubMedGoogle Scholar
  2. Andrews, KT, Patel, BKC 1996Fervidobacterium gondwanense sp Nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of AustraliaInt. J. Syst. Bacteriol.46265269CrossRefGoogle Scholar
  3. Codex Alimentarius Commission (2004) Joint FAO and WHO Food Standards Programme. Drafts and Proposed draft Maximum residue limits in foods and feeds. CX/PR 04/5. 157 Part.A1. Thirty-six Session, New Delhi, India. 19–24 April 2004 Google Scholar
  4. Connolly, G, Patel, BKC 2002Development of fluorescent adjacent hybridization probes and their application in Real-Time PCR for the simultaneous detection and identification of Fervidobacterium and CaloramatorInt. J. Syst. Evol. Microbiol.5218371843Google Scholar
  5. Cruickshank, R, Duguid, JP, Marimon, BP, Swain, RHA 1975The Practice of Medical Microbiology12Longman Group, Ltd.Churchill Livingstone, New YorkVol. 2Google Scholar
  6. Dikshit, AK, Lal, OP, Sinha, SR, Srivastava, YN 2002Safety evaluation, persistence and bioefficacy of imidacloprid and beta-cyfluthrin on okra: part-IIPestology263037Google Scholar
  7. Gopal M, Jha SK, Niwas R, Mukherjee I & Shukla, L (2002a) Screening of bacteria for degradation of pesticides. Proceedings of National Conference on Soil Contamination and Bio-diversity. Industrial Toxicology Research Centre. Lucknow. February 8–10.Google Scholar
  8. Gopal, M, Mukherjee, I, Chander, S 2002bBehaviour of beta-cyfluthrin and imidacloprid in mustard crop: alternative insecticide for aphid controlBull. Environ. Contam. Toxicol.68406411Google Scholar
  9. Gopal, M, Mukherjee, I, Roy, NK, Das, SC, Gope, B 1987Efficacy of fluvalinate against pests of tea and its residues studiesPesticides283336Google Scholar
  10. Grant, RJ, Betts, WB 2003Biodegradation of the synthetic pyrethroid cypermethrin in used sheep dipLett. Appl. Microbiol.36173176Google Scholar
  11. Grant, RJ, Betts, WB 2004Mineral and carbon usage of two synthetic pyrethroid degrading bacterial isolatesJ. Appl. Microbiol.97656662Google Scholar
  12. Grant, RJ, Daniell, TJ, Betts, WB 2002Isolation and identification of synthetic pyrethroid degrading bacteriaJ. Appl. Microbiol.92534540Google Scholar
  13. Hall, TA 1999BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NTNucleic Acid Symp. Ser.419598Google Scholar
  14. Khan, SU, Bekhi, RM, Tapping, RI, Akhtar, MH 1988Deltamethrin residues in an organic soill under laboratory conditions and its degradation by a bacterial strainJ. Agric. Food Chem.36636638Google Scholar
  15. Kim, J, Liu, KH, Kang, SH, Koo, SJ, Kim, JH 2003Degradation of the sulfonylurea herbicide LGC-42153 in flooded soilPest. Manage. Sci.5912601264Google Scholar
  16. Leicht, WR, Fuchs, WR, Londerschausen, M 1996Stability and biological activity of cyfluthrin isomerPestic Sci.48325337Google Scholar
  17. Maidak, BL, Col, JR, Lilburn, TG Jr, Parker, CT, Saxman, PR, Farris, RJ, Garrity, GM, Olsen, GJ, Schmidt, TM, Tiedje, JM 2001The RDP-II (Ribosomal Database Project) continuesNucleic Acids Res.29173174Google Scholar
  18. Mukherjee, I, Gopal, M 1992Residue behaviour of Fenvalerate, Tau-fluvalinate, Lambda-cyhalothrin and Monocrotrophos in eggplant (Solanum melongena L.) fruitsPestic. Sci.36175179Google Scholar
  19. Mukherjee, I, Gopal, M, Kusum,  2001Evaluation of residues of β-cyfluthrin on cottonBull. Environ. Contam. Toxicol.695458Google Scholar
  20. Naumann, K 1998Research into fluorinated pyrethroid alcohols an episode in the history of pyrethroid discoveryPestic Sci.52320Google Scholar
  21. Palleroni, NJ, Doudoroff, M, Stanier, RY, Solanes, RE, Mandel, M 1970Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri groupJ. Gen. Microbiol.60215231Google Scholar
  22. Sakata, S, Mikami, N, Yamada, H 1992Degradation of pyrethroid optical isomers by soil microorganismsJ. Pestic. Sci.17181189Google Scholar
  23. Saikia, N 2003Detoxification of imidacloprid and β-cyfluthrin using various enzymes sources Ph.D. ThesisIndian Agricultural Research InstituteNew DelhiGoogle Scholar
  24. Saikia, N, Gopal, M 2004Biodegradation of Beta-cyfluthrin by FungiJ. Agric. Food Chem.512201223Google Scholar
  25. Shaw, DJ, Dodgson, KS, White, GF 1980Substrate specificity and other properties of the inducible S3 secondary alkylsulphohydrolase purified from the detergent degrading bacterium Pseudomonas C12BBiochem. J.187181190Google Scholar
  26. Sinha, S, Gopal, M 2002Evaluation the safety of beta-cyfluthrin insecticide for usage in eggplant (Solanum melongena L.) cropBull. Environ. Contam. Toxicol.68400405Google Scholar
  27. Sinha, S, Aggarwal, R, Gopal, M 2002In Vitro detoxification of beta-cyfluthrin–a synthetic pyrethroid by two fungal AntagonistsPestic. Res. J.2319322Google Scholar
  28. Stanier, RY, Palleroni, NJ, Doudoroff, M 1966The aerobic Pseudomonads: a taxonomic studyJ. Gen. Microbiol.43159271Google Scholar
  29. Stolp, H, Gadkeri, D 1981Non pathogenic members of the genus PseudomonasStarr, MPStolp, HTruper, HGBalows, ASchlegel, HG eds. The ProkaryotesSpringer-VerlagBerlin719741Google Scholar
  30. Strauber, H, Muller, RH, Babel, W 2003Evidence of cytochrome P450-catalyzed cleavage of the ether bond of phenoxybutyrate herbicides in Rhodococcus erythropolis K2-3Biodegradation144150Google Scholar
  31. White, GF, Russell, NJ, Tidswell, EC 1996Bacterial scission of ether bondsMicrobial Rev.60216232Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Nirmali Saikia
    • 1
  • Subrata K. Das
    • 2
  • Bharat K. C. Patel
    • 3
  • Ram Niwas
    • 1
  • Aqbal Singh
    • 4
  • Madhuban Gopal
    • 1
  1. 1.Division of Agricultural ChemicalsIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of BiotechnologyInstitute of Life Sciences Bhubaneswar India
  3. 3.School of Biomolecular and Biomedical Sciences, Faculty of Science and TechnologyGriffith UniversityBrisbaneAustralia
  4. 4.National Research Centre on Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations