, Volume 16, Issue 5, pp 449–459 | Cite as

Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1

  • Miho Sasaki
  • Jun-ichi Maki
  • Ko-ichi Oshiman
  • Yoshinobu MatsumuraEmail author
  • Tetsuaki Tsuchido


The capacity and pathway of bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane] degradation in Sphingomonassp. strain AO1, which was isolated from the soil of a vegetable-growing field in Japan, were investigated. The bacterial strain was able to grow in a basal mineral salt medium containing BPA as the sole carbon source (BSMB medium), and was able to degrade 115 μ g ml−1 BPA in 6 h in L medium. Several BPA metabolites were detected in the culture supernatant by HPLC and then identified by GC-MS and LC-MS-MS. These compounds were confirmed to be the same as those reported for other BPA-degrading bacteria. BPA degradation by cells in the basal mineral salt medium was induced by BPA, and activity was detected only in the intracellular soluble fraction in the presence of coenzymes, such as NADH, NAD+ , NADPH or NADP+. The addition of metyrapone, a cytochrome P450 inhibitor, to BSMB medium resulted in a decrease in BPA degradation and cell growth. The BPA-degradation activity of the intracellular soluble fraction was also inhibited by the cytochrome P450 inhibitor. Carbon monoxide difference spectra indicated that cytochrome P450 was present in the cells and that the amount of cytochrome P450 corresponded to the cellular BPA-degradation activity. Our results provide evidence that the cytochrome P450 system is involved in BPA metabolism in Sphingomonassp. strain AO1.


biodegradation bisphenol A cytochrome P450 Sphingomonas sp. 







Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Kassim, L, Taylor, KE, Nicell, JA, Bewtra, JK, Biswas, N 1994Enzymatic removal of selected aromatic contaminants from wastewater by a fungal peroxidase from Coprinus macrorhizus in batch reactorsJ. Chem. Technol. Biotechnol.61179182Google Scholar
  2. Atkinson, A, Roy, D 1995aIn vivo DNA adduct formation by bisphenol AEnviron. Mol. Mutagen266066Google Scholar
  3. Atkinson, A, Roy, D 1995bIn vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolite(s)Biochem. Biophys. Res. Commun.210424433Google Scholar
  4. Bhushan, B, Trott, S, Spain, JC, Halasz, A, Paquet, L, Hawari, J 2003Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22Appl. Environ. Microbiol.6913471351Google Scholar
  5. Brotons, JA, Olea-Serrano, MF, Villalobos, M, Pedraza, V, Olea, N 1995Xenoestrogens released from lacquer coatings in food cansEnviron. Health Perspect.103608612Google Scholar
  6. Cohen, R, Persky, L, Hadar, Y 2002Biotechnological applications and potential of wood-degrading mushrooms of the genus PleurotusAppl. Microbiol. Biotechnol.58582594Google Scholar
  7. Colborn, T, Dumanoski, D, Myers, JP 1996Our stolen futureDutton SignetNew YorkGoogle Scholar
  8. Coleman, NV, Spain, JC, Duxbury, T 2002Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450J. Appl. Microbiol.93463472Google Scholar
  9. Gaido, KW, Leonard, LS, Lovell, S, Gould, JC, Babai, D, Portier, CJ, McDonnell, DP 1997Evaluation of chemicals with endocrine modulating activity in a yeast–based steroid hormone receptor gene transcription assayToxicol. Appl. Pharmacol.143205212Google Scholar
  10. Fukuda, T, Uchida, H, Takashima, Y, Uwajima, T, Kawabata, T, Suzuki, M 2001Degradation of bisphenol A by purified laccase from Trametes villosaBiochem. Biophys. Res. Commun.284704706Google Scholar
  11. Gold, MH, Alic, M 1993Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporiumMicrobiol. Rev.57605622Google Scholar
  12. Hirano, T, Honda, Y, Watanabe, T, Kuwahara, M 2000Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatusBiosci. Biotechnol. Biochem.6419581962Google Scholar
  13. Ike, M, Jin, CS, Fujita, M 1995Isolation and Characterization of a Novel Bisphenol A-degrading Bacterium Pseudomonas paucimobilis Strain FJ-4Jpn. J. Water Treatment Biol.31203212Google Scholar
  14. Ike, M, Chen, MY, Jin, CS, Fujita, M 2002Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-AEnviron. Toxicol.17457461Google Scholar
  15. Kawamura, Y, Inoue, K, Nakazawa, H, Yamada, T, Maitani, T 2001Cause of bisphenol A migration from cans for drinks and assessment of improved cansShokuhin Eiseigaku Zasshi421317(In Japanese)Google Scholar
  16. Kim, JC, Shin, HC, Cha, SW, Koh, WS, Chung, MK, Han, SS 2001Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancyLife Sci.6926112625Google Scholar
  17. Krishnan, AV, Stathis, P, Permuth, SF, Tokes, L, Feldman, D 1993Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclavingEndocrinology13222792286CrossRefPubMedGoogle Scholar
  18. Lewis, DF, Hlavica, P 2000Interactions between redox partners in various cytochrome P450 systems: functional and structural aspectsBiochim. Biophys. Acta.1460353374Google Scholar
  19. Lobos, JH, Leib, TK, Su, TM 1992Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacteriumAppl. Environ. Microbiol.5818231831Google Scholar
  20. Martinis, SA, Blake, SR, Hager, LP, Sligar, SG 1996Probing of the heme iron coordination structure of pressure-induced cytochrome P420camBiochemistry351453014536Google Scholar
  21. Mayer, AM, Staples, RC 2002Laccase: new functions for an old enzymePhytochemistry60551565CrossRefPubMedGoogle Scholar
  22. Morrissey, RE, George, JD, Price, CJ, Tyl, RW, Marr, MC, Kimmel, CA 1987The developmental toxicity of bisphenol A in rats and miceFundam. Appl. Toxicol.8571582Google Scholar
  23. Munro, AW, Lindsay, JG 1996Bacterial cytochromes P-450Mol. Microbiol.2011151125Google Scholar
  24. Olea, N, Pazos, P, Exposito, J 1998Inadvertent exposure to xenoestrogensEur. J. Cancer Prev.11723Google Scholar
  25. Omura, T, Sato, R 1964The carbon monoxide-binding pigment of liver microsomesJ. Biol. Chem.23923792387Google Scholar
  26. Omura, T 1999Forty years of cytochrome P450Biochem. Biophys. Res. Commun.266690698Google Scholar
  27. Poupin, P, Truffaut, N, Combourieu, B, Besse, P, Sancelme, M, Veschambre, H, Delort, AM 1998Degradation of morpholine by an environmental Mycobacterium strain involves a cytochrome P-450Appl. Environ. Microbiol.64159165Google Scholar
  28. Ronen, Z, Abeliovich, A 2000Anaerobic–aerobic process for microbial degradation of tetrabromobisphenol AAppl. Environ. Microbiol.6623722377Google Scholar
  29. Roy, D, Palangat, M, Chen, CW, Thomas, RD, Colerangle, J, Atkinson, A, Yan, ZJ 1997Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicalsJ. Toxicol. Environ. Health50129Google Scholar
  30. Sakurai, A, Toyoda, S, Sakakibara, M 2001Removal of bisphenol A by polymerization and precipitation method using Coprinus cinereus peroxidaseBiotechnol. Lett.23995998Google Scholar
  31. Schrader, T, Schuffenhauer, G, Sielaff, B, Andreesen, JR 2000High morpholine degradation rates and formation of cytochrome P450 during growth on different cyclic amines by newly isolated Mycobacterium sp. strain HE5Microbiology14610911098Google Scholar
  32. Seth-Smith, HM, Rosser, SJ, Basran, A, Travis, ER, Dabbs, ER, Nicklin, S, Bruce, NC 2002Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrousAppl. Environ. Microbiol.6847644771Google Scholar
  33. Spivack, J, Leib, TK, Lobos, JH 1994Novel pathway for bacterial metabolism of bisphenol A Rearrangements and stilbene cleavage in bisphenol A metabolismJ. Biol. Chem.26973237329Google Scholar
  34. Staples, CA, Dorn, PB, Klecka, GM, O’Block, ST, Harris, LR 1998A review of the environmental fate, effects, and exposures of bisphenol AChemosphere3621492173Google Scholar
  35. Sugita-Konishi, Y, Shimura, S, Nishikawa, T, Sunaga, F, Naito, H, Suzuki, Y 2003Effect of Bisphenol A on non-specific immunodefenses against non-pathogenic Escherichia coliToxicol. Lett.136217227Google Scholar
  36. Tanaka, T, Yamada, K, Tonosaki, T, Konishi, T, Goto, H, Taniguchi, M 2000Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic esterWater Sci. Technol.428995Google Scholar
  37. Testa, B, Jenner, P 1981Inhibitors of Cytochrome P-450s and their mechanism of actionDrug Metab. Rev.121117Google Scholar
  38. Tsutsumi, Y, Haneda, T, Nishida, T 2001Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetesChemosphere42271276CrossRefPubMedGoogle Scholar
  39. Uchida, H, Fukuda, T, Miyamoto, H, Kawabata, T, Suzuki, M, Uwajima, T 2001Polymerization of bisphenol A by purified laccase from Trametes villosaBiochem. Biophys. Res. Commun.287355358Google Scholar
  40. Uotila, JS, Salkinoja-Salonen, MS, Apajalahti, JH 1991Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-IBiodegradation22531Google Scholar
  41. Yoshihara, S, Makishima, M, Suzuki, N, Ohta, S 2001Metabolic activation of bisphenol A by rat liver S9 fractionToxicol. Sci.62221227Google Scholar
  42. Wong, LL 1998Cytochrome P450 monooxygenasesCurr. Opin. Chem. Biol.2263268Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Miho Sasaki
    • 1
  • Jun-ichi Maki
    • 1
  • Ko-ichi Oshiman
    • 3
  • Yoshinobu Matsumura
    • 1
    • 2
    Email author
  • Tetsuaki Tsuchido
    • 1
    • 2
  1. 1.Department of Biotechnology, Faculty of EngineeringKansai UniversitySuitaJapan
  2. 2.High Technology Research CenterKansai UniversitySuitaJapan
  3. 3.Tsukuba Research InstituteSumitomo Forestry Co., Ltd.TsukubaJapan

Personalised recommendations