Advertisement

Western Mexico is a priority area for the conservation of Cosmos (Coreopsideae, Asteraceae), based on richness and track analysis

  • Georgina Vargas-Amado
  • Arturo Castro-Castro
  • Mollie Harker
  • María Elena Vargas-Amado
  • José Luis Villaseñor
  • Enrique Ortiz
  • Aarón RodríguezEmail author
Original Paper

Abstract

Mexico ranks fourth worldwide for its number of species of vascular plants; however, insufficient area has been marked for conservation as Protected Natural Areas (PNAs); 176 PNAs represent 12% of the total surface and encompass only a small portion of the Mexican endemic species. Strategies for setting up conservation zones are often based on identifying biodiversity hotspots to preserve the maximum number of species with the most efficient use of funds. Here we used the richness analysis by grid method based on herbarium specimens to locate zones with a high richness of Cosmos taxa (species and their varieties). Because this approach can lead to omission error, we also obtained an Ecological Niche Model (ENM) for each Cosmos taxon to perform a richness analysis by grid and locate sites with suitable conditions for supporting the most Cosmos taxa. We conducted a panbiogeographic analysis to locate biogeographical nodes, sites of great geobiotic complexity. Western Mexico was thus identified as the highest priority for Cosmos conservation; it has the greatest richness and most suitable conditions for Cosmos and has great biotic complexity. Although one of the largest Mexican PNAs is located in this region, some species with restricted distribution do not occur within this Protected Natural Area (PNA); therefore, a southwest extension of this PNA is proposed.

Keywords

Biogeographical node Ecological Niche model Endemism Protected natural area Richness analysis by grid Western Mexico 

Notes

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the financing of this work through Project number 80200. GVA and ACC express gratitude to CONACyT for scholarships 228901 and 229039, respectively. The authors acknowledge the help of the staff of the herbaria consulted. Information obtained from the Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO), Instituto Nacional de Estadística y Geografía (INEGI), Global Climate Data (WorldClim), Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Southwest Environmental Information Network and World (SEINet) and Database on Protected Areas (WDPA) through their online pages was fundamental for the development of this work. The authors acknowledge Tom Wendt and Amber Schoneman, of the University of Texas herbarium for providing the Cosmos database of the exsiccata. We thanks Beth E. Hazen and two anonymous reviewers for helpful comments on the manuscript.

Author contributions

GVA, JLV and AR designed the study; GVA, ACC, MH, JLV, EO and AR collected the data; GVA and EO performed the analyses; GVA and MEVA prepared the figures; GVA, ACC, MEVA, JLV and AR interpreted the results and wrote the manuscript; all authors contributed to the discussion.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10531_2019_1898_MOESM1_ESM.pdf (261 kb)
Supplementary material 1 (PDF 261 kb)

References

  1. Aguilar-Aguilar R, Contreras-Medina R (2001) La distribución de los mamíferos marinos de México: un enfoque panbiogeográfico. In: Llorente J, Morrone JJ (eds) Introducción a la Biogeografía en Latinoamérica: teorías, conceptos, métodos y aplicaciones. Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, pp 213–219Google Scholar
  2. Aguirre-Gutiérrez J, Duivenvoorden JF (2010) Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev Mex Biodivers 81:875–882.  https://doi.org/10.22201/ib.20078706e.2010.003.657 CrossRefGoogle Scholar
  3. Alatorre-Zamora MA, Campos-Enríquez JO (1991) La Primavera caldera (Mexico): structure inferred from gravity and hydrogeological considerations. Geophysics 56:992–1002.  https://doi.org/10.1190/1.1443132 CrossRefGoogle Scholar
  4. Álvarez-Mondragón E, Morrone JJ (2004) Propuesta de áreas para la conservación de aves de México, empleando herramientas panbiogeográficas e índices de complementariedad. Interciencia 29:112–120Google Scholar
  5. Amezcua N (2000) Estudio paleobotánico de la localidad El Bajío en la caldera de la Sierra de La Primavera, Jalisco. Dissertation, Universidad de GuadalajaraGoogle Scholar
  6. Anguiano-Constante MA, Munguía-Lino G, Ortiz E, Villaseñor JL, Rodríguez A (2018) Riqueza, distribución geográfica y conservación de Lycianthes serie Meizonodontae (Capsiceae, Solanaceae). Rev Mex Biodivers 89:516–529.  https://doi.org/10.22201/ib.20078706e.2018.2.2340 CrossRefGoogle Scholar
  7. Aragón-Parada J (2018) Diversidad y distribución geográfica del género Sedum (Crassulaceae), en la Sierra Madre del Sur. MSc Dissertation, Universidad de GuadalajaraGoogle Scholar
  8. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893.  https://doi.org/10.1007/s10531-012-0242-1 CrossRefGoogle Scholar
  9. Arriaga L, Espinoza JM, Aguilar C, Martínez E, Gómez L, Loa E (2000) Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y uso de la Biodiversidad, MexicoGoogle Scholar
  10. Ballesteros-Barrera C, Aguilar-Romero O, Zarate-Hernández R, Ballesteros-Tapia L (2017) Distribución geográfica y conservación de nueve especies del género Ferocactus (Cactaceae) en México. Rev Fitotec Mex 40:131–140Google Scholar
  11. Bunawan H, Baharum SN, Bunawan SN, Amin NM, Noor NM (2014) Cosmos caudatus Kunth: a traditional medicinal herb. Glob J Pharmacol 8:420–426.  https://doi.org/10.5829/idosi.gjp.2014.8.3.8424 CrossRefGoogle Scholar
  12. Camou-Guerrero A, Reyes-García V, Martínez-Ramos M, Casas A (2008) Knowledge and use value of plant species in a Rarámuri community: a gender perspective for conservation. Hum Ecol 36:259–272.  https://doi.org/10.1007/s10745-007-9152-3 CrossRefGoogle Scholar
  13. Castro-Castro A (2015) Filogenia y evolución del género Cosmos (Asteraceae, Coreopsideae). PhD Dissertation, Universidad de GuadalajaraGoogle Scholar
  14. Castro-Castro A, Harker M, Vargas-Amado G, Rodríguez A (2013) Two new species of Cosmos section Discopoda (Coreopsideae: Asteraceae) from Jalisco, Mexico. Phytotaxa 146:35–49.  https://doi.org/10.11646/phytotaxa.146.2.1 CrossRefGoogle Scholar
  15. Castro-Castro A, Vargas-Amado G, Castañeda-Nava JJ, Harker M, Munguía-Lino G, Santacruz-Ruvalcaba F, Rodríguez A (2017) Chromosomic numbers for three species of Cosmos section Discopoda (Asteraceae, Coreopsideae), with cytogeographic notes. Acta Bot Mex 118:41–52.  https://doi.org/10.21829/abm118.2017.1199 CrossRefGoogle Scholar
  16. Ceballos G, Ehrlich PR (2006) Global mammal distributions, biodiversity hotspots, and conservation. P Natl Acad Sci USA 103:19374–19379.  https://doi.org/10.1073/pnas.0609334103 CrossRefGoogle Scholar
  17. Cházaro-Basáñez M, Vázquez-García JA, Vargas-Rodríguez YL (2005) Agave valenciana (Agavaceae), a gigantic new species from Jalisco, Mexico. Novon 15:525–530Google Scholar
  18. Cházaro-Basáñez M, Valencia-Pelayo OM, Lomelí-Sención JA, Vargas-Rodríguez YL (2006) Agave vazquezgarciae (Agavaceae), a new species from Jalisco, Mexico. Novon 16:458–461.  https://doi.org/10.3417/1055-3177(2006)16%5b458:AVAANS%5d2.0.CO;2 CrossRefGoogle Scholar
  19. Cházaro-Basáñez M, Lomelí-Sención JA, Valencia-Pelayo OM, Vargas-Rodríguez YL (2008) Otra nueva especie de Agave (Agavaceae) del estado de Jalisco, México. Bouteloua 3:23–28Google Scholar
  20. CONANP (2017) Áreas Naturales Protegidas Federales de México, digital map. Comisión Nacional de Áreas Naturales Protegidas. http://sig.conanp.gob.mx/website/pagsig/info_shape.htm. Accessed 30 Mar 2017
  21. CONANP (2018) Áreas Naturales Protegidas. Comisión Nacional de Áreas Naturales Protegidas. https://www.gob.mx/conanp#1692. Accessed 26 Feb 2018
  22. Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E (2014a) Potential species distribution modeling and the use of principal component analysis as predictor variables. Rev Mex Biodivers 85:189–199.  https://doi.org/10.7550/rmb.36723 CrossRefGoogle Scholar
  23. Cruz-Cárdenas G, López-Mata L, Ortiz-Solorio CA, Villaseñor JL, Ortiz E, Silva JT, Estrada-Godoy F (2014b) Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma 213:29–35.  https://doi.org/10.1016/j.geoderma.2013.07.014 CrossRefGoogle Scholar
  24. Daru BH, le Roux PC, Gopalraj J, Park DP, Holt BG, Greve M (2019) Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Global Ecol Biogeogr 28:757–766.  https://doi.org/10.1111/geb.12888 CrossRefGoogle Scholar
  25. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Divers Distrib 17:43–57.  https://doi.org/10.1111/j.1472-4642.2010.00725.x CrossRefGoogle Scholar
  26. Espinosa-Organista D, Ocegueda-Cruz S, Aguilar-Zúñiga C, Flores-Villela O, Llorente-Bousquets J (2008) El conocimiento biogeográfico de las especies y su regionalización natural. In: Sarukhán J (ed) Capital natural de México, vol I. Conocimiento actual de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, pp 33–65Google Scholar
  27. ESRI (1992-2002) ArcView 3.3. Environmental Systems Research Institute, Inc., RedlandsGoogle Scholar
  28. Farsani NT, Coelho C, Costa C (2011) Geotourism and geoparks as novel strategies for socio-economic development in rural areas. Int J Tour Res 13:68–81.  https://doi.org/10.1002/jtr.800 CrossRefGoogle Scholar
  29. Fine PVA, Ree RH (2006) Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Amer Nat 168:796–804.  https://doi.org/10.1086/508635 CrossRefGoogle Scholar
  30. Fresnedo-Ramírez J, Orozco-Ramírez Q (2013) Diversity and distribution of genus Jatropha in Mexico. Genet Resour Crop Ev 60:1087–1104.  https://doi.org/10.1007/s10722-012-9906-7 CrossRefGoogle Scholar
  31. Funk VA, Richardson KS, Ferrier S (2005) Survey-gap analysis in expeditionary research: where do we go from here? Biol J Linn Soc 85:549–567.  https://doi.org/10.1111/j.1095-8312.2005.00520.x CrossRefGoogle Scholar
  32. García-Marmolejo G, Escalante T, Morrone JJ (2008) Establecimiento de prioridades para la conservación de mamíferos terrestres neotropicales de México. Mastozool Neotrop 15:41–65Google Scholar
  33. Gontijo LM, Beers EH, Snyder WE (2013) Flowers promote aphid suppression in apple orchards. Biol Control 66:8–15.  https://doi.org/10.1016/j.biocontrol.2013.03.007 CrossRefGoogle Scholar
  34. González-Gallegos JG, Morales-Arias JG, Rodríguez-Hernández JL (2012a) Salvia cacomensis (Lamiaceae), a new species from Jalisco, México. Rev Mex Biodivers 83:341–346.  https://doi.org/10.22201/ib.20078706e.2012.2.968 CrossRefGoogle Scholar
  35. González-Gallegos JG, Vázquez-García JA, Santana-Michel FJ, Cuevas-Guzmán R, Guzmán-Hernández L (2012b) Salvia meera, S. rogersiana, S. santanae and S. concolor var. iltisii (Lamiaceae), three new species and a variety from Jalisco. Mexico. Rev Mex Biodivers 83:591–604.  https://doi.org/10.7550/rmb.26217 CrossRefGoogle Scholar
  36. González-Gallegos JG, Vázquez-García JA, Cházaro-Basáñez MJ (2013) Salvia carreyesii, Salvia ibugana and Salvia ramirezii (Lamiaceae), three new species from Jalisco, Mexico. Rev Mex Biodivers 84:7–19.  https://doi.org/10.7550/rmb.29131 CrossRefGoogle Scholar
  37. González-Tamayo JR, Hernández LH (2010) Las orquídeas del occidente de México. Consejo Estatal de Ciencia y Tecnología del Estado de Jalisco, GuadalajaraGoogle Scholar
  38. González-Villarreal LM (2003) Two new species of oak (Fagaceae, Quercus sect. Lobatae) from the Sierra Madre del Sur. Mexico. Brittonia 55:49–60.  https://doi.org/10.1663/0007-196X(2003)055%5b0049:TNSOOF%5d2.0.CO;2 CrossRefGoogle Scholar
  39. González-Zamora A, Luna-Vega I, Villaseñor JL, Ruiz-Jiménez CA (2007) Distributional patterns and conservation of species of Asteraceae (asters etc.) endemic to eastern Mexico: a panbiogeographical approach. Syst Biodivers 5:135–144.  https://doi.org/10.1017/S1477200006002192 CrossRefGoogle Scholar
  40. Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr 15:578–587.  https://doi.org/10.1111/j.1466-8238.2006.00257.x CrossRefGoogle Scholar
  41. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1009.  https://doi.org/10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  42. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  43. Hair JF, Anderson RE, Tatham RL, Black WC (1999) Análisis multivariante, 5th edn. Prentice Hall, MadridGoogle Scholar
  44. Halffter G (1994) Conservación de la biodiversidad y áreas protegidas en los países tropicales. Ciencias 36:4–13Google Scholar
  45. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49.  https://doi.org/10.1038/23876 CrossRefGoogle Scholar
  46. Heads M (2004) What is a node? J Biogeogr 31:1883–1891.  https://doi.org/10.1111/j.1365-2699.2004.01201.x CrossRefGoogle Scholar
  47. Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112.  https://doi.org/10.2307/3558435 CrossRefPubMedGoogle Scholar
  48. Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Berrantes I, Rojas E (2004) DIVA-GIS versión 4. Un Sistema de Información Geográfica para el análisis de distribución de especies. Centro Internacional de la Papa, Instituto Internacional de Recursos Genéticos Vegetales, LimaGoogle Scholar
  49. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvisc A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  50. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381.  https://doi.org/10.1111/j.1365-2664.2008.01524.x CrossRefGoogle Scholar
  51. Hogg BN, Bugg RL, Daane KM (2011) Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol Control 56:76–84.  https://doi.org/10.1016/j.biocontrol.2010.09.007 CrossRefGoogle Scholar
  52. Horgan FG, Ramal AF, Bernal CC, Villegas JM, Stuart AM, Almazan MLP (2016) Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Sci 6:7–15.  https://doi.org/10.1016/j.profoo.2016.02.002 CrossRefGoogle Scholar
  53. IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1., 2nd edition. International Union for Conservation of Nature and Natural Resources, GlandGoogle Scholar
  54. IUCN (2018) The IUCN Red List of Threatened Species, Version 2018-2. International Union for Conservation of Nature and Natural Resources. http://www.iucnredlist.org. Accessed 22 Nov 2018
  55. IUCN and UNEP-WCMC (2018) The World Database on Protected Areas (WDPA). UNEP-WCMC. https://www.protectedplanet.net/. Accessed 05 June 2018
  56. Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890.  https://doi.org/10.1111/j.1472-4642.2008.00496.x CrossRefGoogle Scholar
  57. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148.  https://doi.org/10.1016/j.tree.2008.02.001 CrossRefPubMedGoogle Scholar
  58. León-Paniagua L, Morrone JJ (2009) Do the Oaxacan Highlands represent a natural biotic unit? A cladistic biogeographical test based on vertebrate taxa. J Biogeogr 36:1939–1944.  https://doi.org/10.1111/j.1365-2699.2009.02134.x CrossRefGoogle Scholar
  59. Leutner B, Horning N (2017) RStoolbox Tools for Remote Sensing Data Analysis. R Package version 1.10. http://bleutner.github.io/RStoolbox. Accessed 12 Mar 2018
  60. Liria J (2008) Sistemas de información geográfica y análisis espaciales: un método combinado para realizar estudios panbiogeográficos. Rev Mex Biodivers 79:281–284.  https://doi.org/10.22201/ib.20078706e.2008.001.503 CrossRefGoogle Scholar
  61. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393.  https://doi.org/10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  62. Lobo JM, Jiménez-Valverde A, Hortal H (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114.  https://doi.org/10.1111/j.1600-0587.2009.06039.x CrossRefGoogle Scholar
  63. Maciel R, Elguera JR, Peña-García LE, Pérez de la Rosa JA (2011) Evolución bio-geológica durante el Pleistoceno, en la Sierra La Primavera, Jalisco, México. Scientia-CUCBA 13:53–71Google Scholar
  64. Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600.  https://doi.org/10.1111/jbi.12546 CrossRefGoogle Scholar
  65. Mera OL, Bye R (2006) La Dahlia una belleza originaria de México. Revista Digital Universitaria 7:1–11Google Scholar
  66. Mittermeier RA, Robles Gil P, Mittermeier CG (1997) Megadiversidad: los países biológicamente más ricos del mundo. Cemex, MéxicoGoogle Scholar
  67. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos F, Habel J (eds) Biodiversity hotspots. Springer, Berlin, pp 3–22CrossRefGoogle Scholar
  68. Montes-Leyva L, Téllez-Valdés O, Bojorquez L, Dávila P, Lira R (2018) Potential areas for conservation of useful flora of the Tehuacán-Cuicatlán Valley, Mexico. Genet Resour Crop Ev 65:343–354.  https://doi.org/10.1007/s10722-017-0538-9 CrossRefGoogle Scholar
  69. Morrone JJ (2004) Panbiogeografía, componentes bióticos y zonas de transición. Rev Bras Entomol 48:149–162.  https://doi.org/10.1590/S0085-56262004000200001 CrossRefGoogle Scholar
  70. Morrone JJ (2009) Evolutionary biogeography: principles and methods. In: Gailis M, Kalninš S (eds) biogeography. Nova Science Publishers, New York, pp 1–62Google Scholar
  71. Morrone JJ (2010) Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography 33:355–361.  https://doi.org/10.1111/j.1600-0587.2010.06266.x CrossRefGoogle Scholar
  72. Morrone JJ, Crisci JV (1992) Aplicación de métodos filogenéticos y panbiogeográficos en la conservación de la diversidad biológica. Evolución Biológica 6:53–66Google Scholar
  73. Morrone JJ, Crisci JV (1995) Historical biogeography: introduction to methods. Annu Rev Ecol Syst 26:373–401.  https://doi.org/10.1146/annurev.es.26.110195.002105 CrossRefGoogle Scholar
  74. Morrone JJ, Escalante T (2009) Panbiogeografía y biogeografía cladística: enfoques complementarios para entender la evolución biótica. In: Morrone JJ, Magaña P (eds) Evolución biológica: una versión actualizada desde la revista Ciencias. Las Prensas de Ciencias, Universidad Nacional Autónoma de México, México, pp 385–396Google Scholar
  75. Morrone JJ, Escalante T, Rodríguez-Tapia G (2017) Mexican biogeographic provinces: map and shapefiles. Zootaxa 4277:277–279.  https://doi.org/10.11646/zootaxa.4277.2.8 CrossRefPubMedGoogle Scholar
  76. Munguía-Lino G, Vargas-Amado G, Vázquez-García LM, Rodríguez A (2015) Riqueza y distribución geográfica de la tribu Tigridieae (Iridaceae) en Norteamérica. Rev Mex Biodivers 86:80–98.  https://doi.org/10.7550/rmb.44083 CrossRefGoogle Scholar
  77. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  78. Pérez de la Rosa JA (1983) A new species of pine from Jalisco, Mexico. Phytologia 54:289–298Google Scholar
  79. Pérez de la Rosa JA (2009) Pinus georginae (Pinaceae), a new species from western Jalisco, Mexico. Brittonia 61:56–61.  https://doi.org/10.1007/s12228-008-9061-9 CrossRefGoogle Scholar
  80. Pérez de la Rosa JA, Gernandt DS (2017) Pinus vallartensis (Pinaceae), a new species from western Jalisco, Mexico. Phytotaxa 331:233–242.  https://doi.org/10.11646/phytotaxa.331.2.7 CrossRefGoogle Scholar
  81. Pérez de la Rosa J, Vargas-Amado G (2017) Gimnospermas. In: Cruz-Angón A, Ordorica-Hermosilla A, Valero-Padilla J, Melgarejo ED (eds) La biodiversidad en Jalisco, studio de estado. CONABIO, Mexico, pp 113–121Google Scholar
  82. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  83. Procuraduría Federal de Protección al Ambiente (2015) Ley general del equilibrio ecológico y la protección al ambiente. Diario Oficial de la Federación, MéxicoGoogle Scholar
  84. QGIS Development Team (2018) QGIS Geographic Information System. Open Source Geospatial Foundation Project, Boston, USA. http://qgis.osgeo.org/Version 3.0.3-Girona
  85. R Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. https://www.R-project.org/. Accessed 26 July 2017
  86. Ramos-Dorantes DB, Villaseñor JL, Ortiz E, Gernandt DS (2017) Biodiversity, distribution, and conservation status of Pinaceae in Puebla, Mexico. Revista Mexicana de Biodiversidad 88:215–223.  https://doi.org/10.1016/j.rmb.2017.01.028 CrossRefGoogle Scholar
  87. Rebelo AG (1994) Iterative selection procedures: centres of endemism and optimal placement of reserves. Strelitzia 1:231–257Google Scholar
  88. Rodríguez A, Harker M, Quezada-Solís A, Casillas-Gaeta S (2006) Diversidad y potencial ornamental del género Cosmos Cav. (Asteraceae) en Jalisco. In: Carvajal S (ed) Avances en la investigación científica en el CUCBA. Universidad de Guadalajara, Zapopan, pp 610–619Google Scholar
  89. Rodríguez-Arévalo I, Mattana E, García L, Liu U, Lira R, Dávila P, Hudson A, Pritchard HW, Ulian T (2017) Conserving seeds of useful wild plants in Mexico: main issues and recommendations. Genet Resour Crop Evol 64:1141–1190.  https://doi.org/10.1007/s10722-016-0427-7 CrossRefGoogle Scholar
  90. Rojas-Parra CA (2007) Una herramienta automatizada para realizar análisis panbiogeográficos. Biogeografía 1:31–33Google Scholar
  91. Rzedowski J (1991) Diversidad y orígenes de la flora fanerogánica de México. Acta Bot Mex 14:3–21.  https://doi.org/10.21829/abm14.1991.611 CrossRefGoogle Scholar
  92. Sechrest W, Brooks TM, da Fonseca GAB, Konstant WR, Mittermeier RA, Purvis A, Rylands AB, Gittleman JL (2002) Hotspots and the conservation of evolutionary history. P Natl Acad Sci USA 99:2067–2071.  https://doi.org/10.1073/pnas.251680798 CrossRefGoogle Scholar
  93. SEINet (2017) Southwest Environmental Information Network. Arizona State University, http//:swbiodiversity.org/seinet/index.php. Accessed 18 Sept 2017Google Scholar
  94. SEMARNAT (2018) Áreas Naturales Protegidas. Comisión Nacional de Áreas Naturales Protegidas. http://www.conanp.gob.mx/regionales. Accessed 20 June 2018
  95. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10.  https://doi.org/10.17161/bi.v2i0.4 CrossRefGoogle Scholar
  96. Soberón J, Osorio-Olvera L, Peterson T (2017) Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Rev Mex Biodivers 88:437–441.  https://doi.org/10.1016/j.rmb.2017.03.011 CrossRefGoogle Scholar
  97. Suárez-Mota ME, Téllez-Valdés O (2014) Red de áreas prioritarias para la conservación de la biodiversidad del Eje Volcánico Transmexicano analizando su riqueza florística y variabilidad climática. Polibotánica 38:67–93Google Scholar
  98. Suárez-Mota ME, Villaseñor JL (2011) Las Compuestas endémicas de Oaxaca, México: diversidad y distribución. B Soc Bot Mex 88:55–66.  https://doi.org/10.17129/botsci.308 CrossRefGoogle Scholar
  99. Suárez-Mota ME, Villaseñor JL, López-Mata L (2015) La región del Bajío, México y la conservación de su diversidad florística. Rev Mex Biodivers 86:799–808.  https://doi.org/10.1016/j.rmb.2015.06.001 CrossRefGoogle Scholar
  100. Svenning JC, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033.  https://doi.org/10.1111/j.1365-2699.2005.01219.x CrossRefGoogle Scholar
  101. Thiers B (2018) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih. Accessed 7 Dec 2018
  102. Torres-Miranda A, Luna-Vega I (2006) Análisis de trazos para establecer áreas de conservación en la Faja Volcánica Transmexicana. Interciencia 31:849–855Google Scholar
  103. Turner JLG (2004) Explaining the global biodiversity gradient: energy, area, history and natural selection. Basic Appl Ecol 5:435–448.  https://doi.org/10.1016/j.baae.2004.08.004 CrossRefGoogle Scholar
  104. Turner BL, Nesom GL (1998) Biogeografía, diversidad y situación de peligro o amenaza de Asteraceae de México. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Diversidad biológica de México: orígenes y distribución. Universidad Nacional Autónoma de México, México, pp 545–561Google Scholar
  105. Ulloa-Ulloa C, Acevedo-Rodríguez P, Beck S et al (2017) An integrated assessment of the vascular plant species of the Americas. Science 358:1614–1617.  https://doi.org/10.1126/science.aao0398 CrossRefPubMedGoogle Scholar
  106. Urbina-Cardona JN, Flores-Villela O (2009) Ecological-niche modeling and prioritization of conservation-area networks for Mexican herpetofauna. Conserv Biol 24:1031–1041.  https://doi.org/10.1111/j.1523-1739.2009.01432.x CrossRefGoogle Scholar
  107. Vargas-Amado G, Castro-Castro A, Harker M, Villaseñor JL, Ortiz E, Rodríguez A (2013) Distribución geográfica y riqueza del género Cosmos (Asteraceae: Coreopsideae). Rev Mex Biodivers 84:536–555.  https://doi.org/10.7550/rmb.31481 CrossRefGoogle Scholar
  108. Vargas-Ponce O, Martínez M, Dávila P (2003) La familia Solanaceae en Jalisco, el género Physalis. Flora de Jalisco 19:5–126Google Scholar
  109. Villaseñor JL (1991) Las Heliantheae endémicas a México: una guía hacia la conservación. Acta Bot Mex 15:29–46.  https://doi.org/10.21829/abm15.1991.619 CrossRefGoogle Scholar
  110. Villaseñor JL (2003) Diversidad y distribución de las Magnoliophyta de México. Interciencia 28:160–167Google Scholar
  111. Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 87:559–902.  https://doi.org/10.1016/j.rmb.2016.06.017 CrossRefGoogle Scholar
  112. Villaseñor JL (2018) Diversidad y distribución de la familia Asteraceae en México. Botanical Sciences 96:332–358.  https://doi.org/10.17129/botsci.1872 CrossRefGoogle Scholar
  113. Villaseñor JL, Ibarra-Manriquez G (1998) La riqueza arbórea de México. Boletín del Instituto de Botánica 5:95–105Google Scholar
  114. Villaseñor JL, Ortiz E (2007) La familia Asteraceae. In: Luna I, Morrone JJ, Espinosa D (eds) Biodiversidad de la Faja Volcánica Transmexicana. UNAM, México, pp 289–310Google Scholar
  115. Villaseñor JL, Téllez-Valdés O (2004) Distribución potencial de las especies del género Jefea (Asteraceae) en México. Anales Inst Biol Bot 75:205–220Google Scholar
  116. Villaseñor JL, Maeda P, Rosell JA, Ortiz E (2007) Plant families as predictors of plant biodiversity in Mexico. Divers Distrib 13:871–876.  https://doi.org/10.1111/j.1472-4642.2007.00385.x CrossRefGoogle Scholar
  117. Villavicencio-García R, Saura S, Santiago-Pérez AL, Chávez-Hernández A (2009) La conectividad forestal de las áreas protegidas del estado de Jalisco con otros ambientes naturales. Scientia CUCBA 11:43–50Google Scholar
  118. Weigand PC (2012) La Caldera de Coli y su vecina Guadalajara. Relac Estud Hist Soc 33:291–318.  https://doi.org/10.24901/rehs.v33i129.537 CrossRefGoogle Scholar
  119. Willis F, Moat J, Paton A (2003) Defining a role for herbarium data in Red list assessments: a case study of Plectranthus from eastern and southern tropical Africa. Biodivers Conserv 12:1537–1552.  https://doi.org/10.1023/A:1023679329093 CrossRefGoogle Scholar
  120. Wood KA, Stillman RA, Hilton GM (2018) Conservation in a changing world needs predictive models. Anim Conserv 21:87–88.  https://doi.org/10.1111/acv.12371 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de GuadalajaraZapopanMexico
  2. 2.Cátedras CONACyT – Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad DurangoDurangoMexico
  3. 3.Forest Resources and Management, Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  5. 5.Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y ZoologíaCentro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de GuadalajaraZapopanMexico

Personalised recommendations