Advertisement

Biodiversity and Conservation

, Volume 28, Issue 14, pp 3873–3890 | Cite as

Atlantic corals under climate change: modelling distribution shifts to predict richness, phylogenetic structure and trait-diversity changes

  • Laura RodriguezEmail author
  • Brezo Martínez
  • Fernando Tuya
Original Paper
Part of the following topical collections:
  1. Coastal and marine biodiversity

Abstract

Climate change is altering species distributions worldwide. Particularly, global warming is driving range contractions and expansions of tropical species, such as corals. The use of climatic projections, via species distribution models to predict species distributional shifts, can identify threaten species and help to set priority areas of conservation. In this study, we assessed if distributional shifts of 45 Atlantic reef-forming corals (scleractinian), and the main environmental variables driving their distributions, correlated with their phylogeny and/or their functional traits; i.e. whether expected contractions and expansions affected specific clades, or specific coral traits. We also estimated the potential loss and/or gain of species richness, phylogenetic diversity (PD) and phylogenetic species variability (PSV), as well as the phylogenetic structure of Atlantic reef communities (‘clustering’, ‘overdispersion’ or ‘randomness’), under a future climate scenario (A2-IPCC-2100). The potential loss of Atlantic corals in the future will be randomly distributed across their phylogeny, i.e. potential extinctions will not only affect one section of the phylogeny, therefore alleviating an inordinate loss of evolutionary history. Nearly all current and future communities presented a ‘random’ phylogenetic structure. No correlation was found between distributional shifts and coral traits. Environmental variables did not show a significant correlation with the phylogeny neither with coral traits. Predicted changes in species richness, PD and PSV vary across the Atlantic; certain areas display large evolutionary diversity losses. Species belonging to isolated clades (high evolutionary distinctiveness) contribute to quantitative increases, or decreases, of PD and PSV, becoming crucial species for conservation. These findings highlight the importance of combining SDMs with phylogenetic/functional metrics to develop conservation strategies to assess the future of corals.

Keywords

Climate change Environmental factors Scleractinia SDMs Phylogenetic diversity Projections 

Notes

Acknowledgements

Laura Rodríguez was supported by the Spanish Ministry of Education, Culture, and Sports with a fellowship FPU (Formación del Profesorado Universitario) AP2012‐3702.

Supplementary material

10531_2019_1855_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5220 kb)

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232.  https://doi.org/10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  2. Araújo MB, Ferri-Yáñez F, Bozinovic F et al (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219.  https://doi.org/10.1111/ele.12155 CrossRefPubMedGoogle Scholar
  3. Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global 8:954–971Google Scholar
  4. Belsley DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New YorkCrossRefGoogle Scholar
  5. Benito BM, Cayuela L, Albuquerque FS (2013) The impact of modelling choices in the predictive performance of richness maps derived from species-distribution models: guidelines to build better diversity models. Methods Ecol Evol 4:327–335.  https://doi.org/10.1111/2041-210x.12022 CrossRefGoogle Scholar
  6. Bowler DE, Benton TG, Bowler DE, Benton TG (2015) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225.  https://doi.org/10.1017/S1464793104006645 CrossRefGoogle Scholar
  7. Buckley LB, Kingsolver JG (2012) Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu Rev Ecol Evol Syst 43:205–226.  https://doi.org/10.1146/annurev-ecolsys-110411-160516 CrossRefGoogle Scholar
  8. Buerki S, Callmander MW, Bachman S et al (2015) Incorporating evolutionary history into conservation planning in biodiversity hotspots. Philos Trans R Soc B Biol Sci 370:1–8.  https://doi.org/10.1098/rstb.2014.0014 CrossRefGoogle Scholar
  9. Buzas MA, Culver SJ (1994) Species pool and dynamics of marine paleocommunities. Science 264(5164):1439–1441CrossRefGoogle Scholar
  10. Califf RM, Rosati RA, Lee KL et al (2007) Regression modelling strategies for improved prognostic prediction. Stat Med 3:143–152.  https://doi.org/10.1002/sim.4780030207 CrossRefGoogle Scholar
  11. Cao Y, DeWalt RE, Robinson JL et al (2013) Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecol Modell 259:30–39.  https://doi.org/10.1016/j.ecolmodel.2013.03.012 CrossRefGoogle Scholar
  12. Carvalho SB, Brito JC, Crespo EJ (2010) From climate change predictions to actions—conserving vulnerable animal groups in hotspots at a regional scale. Glob Chang Biol 16:3257.  https://doi.org/10.1111/j.1365-2486.2010.02212.x CrossRefGoogle Scholar
  13. Chen I-C, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species of climate warming. Science 333:1024–1026.  https://doi.org/10.1126/science.1206432 CrossRefPubMedGoogle Scholar
  14. Cheung WWL, Lam VWY, Sarmiento JL et al (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251.  https://doi.org/10.1111/j.1467-2979.2008.00315.x CrossRefGoogle Scholar
  15. Clemente S, Rodríguez A, Brito A et al (2010) On the occurrence of the hydrocoral Millepora (Hydrozoa: Milleporidae) in the subtropical eastern Atlantic (Canary Islands): is the colonization related to climatic events? Coral Reefs 30:237–240.  https://doi.org/10.1007/s00338-010-0681-7 CrossRefGoogle Scholar
  16. Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216.  https://doi.org/10.1007/BF00402313 CrossRefGoogle Scholar
  17. Comte L, Murienne J, Grenouillet G (2014) Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat Commun 5:1–10.  https://doi.org/10.1038/ncomms6053 CrossRefGoogle Scholar
  18. Couce E, Ridgwell A, Hendy EJ (2012) Environmental controls on the global distribution of shallow-water coral reefs. J Biogeogr 39:1508–1523.  https://doi.org/10.1111/j.1365-2699.2012.02706.x CrossRefGoogle Scholar
  19. Couce E, Ridgwell A, Hendy EJ (2013) Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob Chang Biol 19:3592–3606.  https://doi.org/10.1111/gcb.12335 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crozier RH (1997) Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annu Rev Ecol Syst 28:243–268CrossRefGoogle Scholar
  21. Darling ES, Alvarez-Filip L, Oliver TA et al (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386.  https://doi.org/10.1111/j.1461-0248.2012.01861.x CrossRefPubMedGoogle Scholar
  22. DeLeo JM, Campbell G (1990) The fuzzy ROC function and medical decisions with uncertainty. In: Proceedings First International Symposium on IEEE, pp 694–699Google Scholar
  23. Díaz S, Settele J, Brondízio E, et al (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem servicesGoogle Scholar
  24. Donner SD, Skirving WJ, Little CM et al (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Chang Biol 11:2251–2265.  https://doi.org/10.1111/j.1365-2486.2005.01073.x CrossRefGoogle Scholar
  25. Duarte L, Viejo RM, Martínez B et al (2013) Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecol 51:1–10.  https://doi.org/10.1016/j.actao.2013.05.002 CrossRefGoogle Scholar
  26. Dubuis A, Pottier J, Rion V et al (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib 17:1122–1131.  https://doi.org/10.1111/j.1472-4642.2011.00792.x CrossRefGoogle Scholar
  27. Duque-Lazo J, van Gils H, Groen TA, Navarro-Cerrillo RM (2016) Transferability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol Modell 320:62–70.  https://doi.org/10.1016/j.ecolmodel.2015.09.019 CrossRefGoogle Scholar
  28. Dustan P, Halas JC (1987) Changes in the reef-coral community of Carysfort reef, Key Largo, Florida: 1974 to 1982. Coral Reefs 6:91–106.  https://doi.org/10.1007/BF00301378 CrossRefGoogle Scholar
  29. Eakin CM, Morgan JA, Heron SF et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE.  https://doi.org/10.1371/journal.pone.0013969 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Method Theory Comp Biol 33:259–260Google Scholar
  31. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342.  https://doi.org/10.1111/j.2041-210X.2010.00036.x CrossRefGoogle Scholar
  32. Erwin TL (1991) An evolutionary basis for conservation strategies. Science 253:750–752.  https://doi.org/10.1126/science.253.5021.750 CrossRefPubMedGoogle Scholar
  33. Faith DP (1992) Conservation evaluation and phylogentic diversity. Biol Conserv 61:1–10.  https://doi.org/10.1890/0012-9658(2006)87%5b1465:attfhf%5d2.0.co;2 CrossRefGoogle Scholar
  34. Feeley KJ (2012) Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob Chang Biol 18:1335–1341.  https://doi.org/10.1111/j.1365-2486.2011.02602.x CrossRefGoogle Scholar
  35. Fodrie FJ, Heck KL, Powers SP et al (2010) Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob Change Biol 16:48–59.  https://doi.org/10.1111/j.1365-2486.2009.01889.x CrossRefGoogle Scholar
  36. Franco JN, Tuya F, Bertocci I et al (2017) The ‘golden kelp’ Laminaria ochroleuca under global change: integrating multiple eco-physiological responses with species distribution models. J Ecol 106:47–58.  https://doi.org/10.1111/ijlh.12426 CrossRefGoogle Scholar
  37. García-Robledo C, Kuprewicz EK, Staines CL et al (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc Natl Acad Sci 113:680–685.  https://doi.org/10.1073/pnas.1507681113 CrossRefPubMedGoogle Scholar
  38. Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191.  https://doi.org/10.1007/BF00265009 CrossRefGoogle Scholar
  39. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009.  https://doi.org/10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  40. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  41. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467.  https://doi.org/10.1111/j.1461-0248.2005.00739.x CrossRefPubMedGoogle Scholar
  42. Hastings A, Cuddington K, Davies KF et al (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101.  https://doi.org/10.1111/j.1461-0248.2004.00687.x CrossRefGoogle Scholar
  43. Heard SB, Mooers AØ (2000) Measuring the loss of evolutionary history from extinction: phylogenetically patterned speciation rates and extinction risks alter the calculus of biodiversity. Proc R Soc Lond B 267:613–620CrossRefGoogle Scholar
  44. Heck K, Fodrie F, Madsen S et al (2015) Seagrass consumption by native and a tropically associated fish species: potential impacts of the tropicalization of the northern Gulf of Mexico. Mar Ecol Prog Ser 520:165–173.  https://doi.org/10.3354/meps11104 CrossRefGoogle Scholar
  45. Helmus MR, Savage K, Diebel MW et al (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925.  https://doi.org/10.1111/j.1461-0248.2007.01083.x CrossRefPubMedGoogle Scholar
  46. Hernández-Delgado EA, Toledo C, Claudio HJ, et al (2006) Spatial and taxonomic patterns of coral bleaching and mortality in Puerto Rico during year 2005. Satell Tools Bleach Response Work Puerto Rico Virgin Islands, St Croix 16.  https://doi.org/10.2147/ott.s92537
  47. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’ s coral reefs. Symbiosis 50:839–866.  https://doi.org/10.1071/MF99078 CrossRefGoogle Scholar
  48. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742.  https://doi.org/10.1126/science.1152509 CrossRefGoogle Scholar
  49. Hoffmann AA, Chown SL, Clusella-Trullas S (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 27:934–949.  https://doi.org/10.1111/j.1365-2435.2012.02036.x CrossRefGoogle Scholar
  50. Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Philos Trans R Soc B Biol Sci 370:20140010.  https://doi.org/10.1098/rstb.2014.0010 CrossRefGoogle Scholar
  51. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61.  https://doi.org/10.1016/S0169-5347(99)01764-4 CrossRefPubMedGoogle Scholar
  52. IPCC (2007) Summary for policymakers. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, M.L. Parry, O.F. Canziani, J.P. Paluti, p 976Google Scholar
  53. Isaac NJB, Turvey ST, Collen B et al (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE.  https://doi.org/10.1371/journal.pone.0000296 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jackson JBC, Hughes TP (1985) Adaptive strategies of coral-reef invertebrates. Am Sci 73:265–274.  https://doi.org/10.1111/ner.12172 CrossRefGoogle Scholar
  55. Kellar PR, Ahrendsen DL, Aust SK et al (2015) Biodiversity comparison among phylogenetic diversity metrics and between three North American prairies. Appl Plant Sci 3:1400108.  https://doi.org/10.3732/apps.1400108 CrossRefGoogle Scholar
  56. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefGoogle Scholar
  57. Kindt R, Coe R (2005) R Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, NairobiGoogle Scholar
  58. Kleypas J, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 159:146–159.  https://doi.org/10.1093/icb/39.1.146 CrossRefGoogle Scholar
  59. Legras G, Loiseau N, Gaertner J-C et al (2019) Assessing functional diversity: the influence of the number of the functional traits. Theor Ecol.  https://doi.org/10.1007/s12080-019-00433-x CrossRefGoogle Scholar
  60. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop) 3:385–394.  https://doi.org/10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  61. Loya Y, Sakai K, Yamazato K et al (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131.  https://doi.org/10.1046/j.1461-0248.2001.00203.x CrossRefGoogle Scholar
  62. Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300:1707–1709CrossRefGoogle Scholar
  63. Martínez B, Viejo RM, Carreño F, Aranda SC (2012) Habitat distribution models for intertidal seaweeds: responses to climatic and non-climatic drivers. J Biogeogr 39:1877–1890.  https://doi.org/10.1111/j.1365-2699.2012.02741.x CrossRefGoogle Scholar
  64. Martinez B, Afonso-Carrillo J, Anadón R et al (2015) Regresión de las algas marinas en la costa atlántica de la Península Ibérica y en las islas Canarias por efecto del cambio climático. Algas Boletın Inf Soc Esp Ficol 49:5–12Google Scholar
  65. Marx BD, Smith EP (1990) Weighted multicollinearity in logistic regression: diagnostics and biased estimation techniques with an example from lake acidification. Can J Fish Aquat Sci 47:1128–1135CrossRefGoogle Scholar
  66. Mcgrath TA, Smith GW (2003) Comparisons of the 1995 and 1998 coral bleaching events on the patch reefs of San Salvador Island, Bahamas. Rev Biol Trop 51:67–75PubMedGoogle Scholar
  67. Meehl GA, Stocker TF, Collins WD, et al (2007) Global climate projections. In: Solomon S, D. Qin MM, Chen ZMM, et al. (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  68. Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976.  https://doi.org/10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  69. Nee S, May RM (1997) Extinction and the loss of evolutionary history. Science 278:692–694.  https://doi.org/10.1126/science.278.5338.692 CrossRefPubMedGoogle Scholar
  70. Occhipinti-Ambrogi A (2007) Global change and marine communities: alien species and climate change. Mar Pollut Bull 55:342–352.  https://doi.org/10.1016/j.marpolbul.2006.11.014 CrossRefPubMedGoogle Scholar
  71. Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:1–3.  https://doi.org/10.1093/bioinformatics/bty633 CrossRefGoogle Scholar
  72. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  73. Parmesan C, Ryrholm N, Stefanescu C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583.  https://doi.org/10.1038/21181 CrossRefGoogle Scholar
  74. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  75. Pollock LJ, Rosauer DF, Thornhill AH et al (2015) Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Philos Trans R Soc B Biol Sci 370:1–10.  https://doi.org/10.1098/rstb.2014.0007 CrossRefGoogle Scholar
  76. Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314.  https://doi.org/10.1890/1540-9295(2004)002%5b0307:cfarso%5d2.0.co;2 CrossRefGoogle Scholar
  77. Redding DW, Mooers AO (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20:1670–1678.  https://doi.org/10.1111/j.1523-1739.2006.00555.x CrossRefPubMedGoogle Scholar
  78. Rodriguez L, Garcia JJ, Carreño F, Martínez B (2019) Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals. Divers Distrib.  https://doi.org/10.1111/ddi.12883 CrossRefGoogle Scholar
  79. Rodríguez-Martínez RE, Jordán-Garza AG, Baker DM, Jordán-Dahlgren E (2012) Competitive interactions between corals and Trididemnum solidum on Mexican Caribbean reefs. Coral Reefs 31:571–577.  https://doi.org/10.1007/s00338-011-0871-y CrossRefGoogle Scholar
  80. Schmitt S, Pouteau R, Justeau D et al (2017) ssdm: an r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol Evol 8:1795–1803.  https://doi.org/10.1111/2041-210X.12841 CrossRefGoogle Scholar
  81. Scott A, Ram K, Hart T, Chamberlain MS (2017) spocc: interface to species occurrence data sources. R package version 0.4.0. http://CRAN.R-project.org/package=spocc. Accessed 23 Mar 2017
  82. Sinervo B, Méndez-de-la-Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899CrossRefGoogle Scholar
  83. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13.  https://doi.org/10.1111/j.1472-4642.2008.00482.x CrossRefGoogle Scholar
  84. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686–690.  https://doi.org/10.1038/nclimate1539 CrossRefGoogle Scholar
  85. Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416.  https://doi.org/10.1016/j.tree.2006.05.012 CrossRefPubMedGoogle Scholar
  86. Thuiller W, Lavergne S, Roquet C et al (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534.  https://doi.org/10.1038/nature09705 CrossRefPubMedGoogle Scholar
  87. Tsirogiannis C, Sandel B (2017) PhyloMeasures: fast and exact algorithms for computing phylogenetic biodiversity measures. R package version 2.1. https://CRAN.R-project.org/package=PhyloMeasures. Accessed 4 Aug 2018
  88. Tucker CM, Cadotte MW, Carvalho SB et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715.  https://doi.org/10.1111/brv.12252 CrossRefPubMedGoogle Scholar
  89. Tyberghein L, Verbruggen H, Pauly K et al (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281.  https://doi.org/10.1111/j.1466-8238.2011.00656.x CrossRefGoogle Scholar
  90. van Gennip SJ, Popova EE, Yool A et al (2017) Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob Change Biol 23:2602–2617.  https://doi.org/10.1111/gcb.13586 CrossRefGoogle Scholar
  91. van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Change 3:508–511.  https://doi.org/10.1038/nclimate1829 CrossRefGoogle Scholar
  92. van Oppen MJH, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci 112:2307–2313.  https://doi.org/10.1073/pnas.1422301112 CrossRefPubMedGoogle Scholar
  93. van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop) 39:542–552.  https://doi.org/10.1111/ecog.01509 CrossRefGoogle Scholar
  94. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254.  https://doi.org/10.1016/0006-3207(91)90030-D CrossRefGoogle Scholar
  95. Vergés A, Steinberg PD, Hay ME et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B.  https://doi.org/10.1098/rspb.2014.0846 CrossRefPubMedGoogle Scholar
  96. Veron JEN (2000) Corals of the world. Vol 1–3. Stafford-Smith M. (ed.) Australian institute of marine science, Townsville, p 1382Google Scholar
  97. Veron JEN, Stafford-Smith MG, Turak E and DeVantier LM (2017) Corals of the world. Version version 0.01 (Beta). http://coralsoftheworld.org/[v0.01(Beta)]. Accessed 9 Mar 2017
  98. Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  99. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150448 CrossRefGoogle Scholar
  100. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100.  https://doi.org/10.1093/bioinformatics/btn358 CrossRefPubMedGoogle Scholar
  101. Wernberg T, Bennett S, Babcock RC et al (2016) Climate driven regime shift of a temperate marine ecosystem. Science 353:169–172.  https://doi.org/10.1126/science.aad8745 CrossRefPubMedGoogle Scholar
  102. Wilson EO (1992) The diversity of life. Harvard University, CambridgeGoogle Scholar
  103. Wilson RJ, Gutiérrez D, Gutiérrez J et al (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146.  https://doi.org/10.1111/j.1461-0248.2005.00824.x CrossRefPubMedGoogle Scholar
  104. Winter A, Appeldoorn RS, Bruckner A et al (1998) Sea surface temperatures and coral reef bleaching off La Parguera, Puerto Rico (northeastern Caribbean Sea). Coral Reefs 17:377–382CrossRefGoogle Scholar
  105. Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204.  https://doi.org/10.1016/j.tree.2012.10.015 CrossRefPubMedGoogle Scholar
  106. Wood R (1998) The ecological evolution of reefs. Annu Rev Ecol Syst 29:179–206.  https://doi.org/10.1146/annurev.ecolsys.29.1.179 CrossRefGoogle Scholar
  107. Wu J, Zhang G (2015) Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change? Ecol Evol 5:2215–2233.  https://doi.org/10.1002/ece3.1513 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38:1–6.  https://doi.org/10.1029/2010GL046474 CrossRefGoogle Scholar
  109. Yee SH, Santavy DL, Barron MG (2008) Comparing environmental influences on coral bleaching across and within species using clustered binomial regression. Ecol Modell 218:162–174.  https://doi.org/10.1016/j.ecolmodel.2008.06.037 CrossRefGoogle Scholar
  110. Young CN, Schopmeyer SA, Lirman D (2012) A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull Mar Sci 88:1075–1098.  https://doi.org/10.5343/bms.2011.1143 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Biología y Geología, Física y Química InorgánicaUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.IU-ECOAQUA, Grupo en Biodiversidad y ConservaciónUniversidad de Las Palmas de Gran Canaria, Campus TafiraCanary IslandsSpain

Personalised recommendations