Advertisement

Biodiversity and Conservation

, Volume 28, Issue 14, pp 3831–3849 | Cite as

Benchmarking nesting aids for cavity-nesting bees and wasps

  • Vivien von KönigslöwEmail author
  • Alexandra-Maria Klein
  • Michael Staab
  • Gesine Pufal
Original Paper

Abstract

In urban areas, the diversity and abundance of cavity-nesting Hymenoptera may be restricted due to scarce nesting resources. Artificial nesting sites (nesting aids) are being installed to compensate for this shortage in a growing number of private gardens and public greenspaces to support Hymenoptera (especially bee) diversity. Various nesting aids are commercially available, but their effectiveness has so far not been investigated empirically. We compared a low-budget commercial nesting aid with a customized version based on scientific evidence. Commercial models comprised bamboo and coniferous wood cavities with fixed short lengths and little variation in diameter, whereas customized models comprised hardwood, reed and bamboo cavities with varying lengths and diameters. Both models were exposed pairwise in private gardens over one season and nesting Hymenoptera species identified. The commercial nesting aids were less well occupied, hosted fewer brood cells and had lower species diversity. Hardwood showed the highest rate of occupancy but reed cavities hosted the highest species diversity due to diverse cavity diameter and length combinations. Cavities with diameters between four and eight mm were occupied most often. Regardless of material, cavities with smooth entrances were strongly preferred. Nesting aids designed in accordance with our findings may thus support high and diverse populations of cavity-nesting Hymenoptera in anthropogenically transformed habitats such as urban areas.

Keywords

Bee hotel Hymenoptera Trap nest Urban ecology Wild bee 

Notes

Acknowledgements

We thank the owners of all gardens for letting us work on their properties. Christian Schmid-Egger and Andreas Haselböck are gratefully acknowledged for identifying taxonomically ambiguous specimens. Vivien von Königslöw was financed by the Bayer Bee Care Center during the later stages of the writing process, but in support of another research project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest in relation to the study in this paper. Vivien von Königslöw was financed by the Bayer Bee Care Center during the later stages of the writing process, but in support of another research project.

Supplementary material

10531_2019_1853_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1882 kb)

References

  1. Amiet F, Neumeyer R, Müller A (1999) Fauna helvetica 4: apidae 2. Schweizerische Entomologische Gesellschaft, NeuchatelGoogle Scholar
  2. Amiet F, Herrmann M, Müller A, Neumeyer R (2004) Fauna helvetica 9: apidae 4. Schweizerische Entomologische Gesellschaft, NeuchatelGoogle Scholar
  3. Baldock KCR, Goddard MA, Hicks DM et al (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282(1803):20142849.  https://doi.org/10.1098/rspb.2014.2849 CrossRefPubMedGoogle Scholar
  4. Balfour NJ, Ollerton J, Castellanos MC, Ratnieks FLW (2018) British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biol Cons 222:278–283.  https://doi.org/10.1016/j.biocon.2018.04.028 CrossRefGoogle Scholar
  5. Barthélémy C (2012) Nest Trapping, a simple method for gathering information on life histories of solitary bees and wasps. Bionomics of 21 species of solitary aculeate in Hong Kong. Hong Kong Entomol Bull 4(1):3–37Google Scholar
  6. Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  7. Baude M, Kunin WE, Boatman ND et al (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530:85–88.  https://doi.org/10.1038/nature16532 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354.  https://doi.org/10.1126/science.1127863 CrossRefPubMedGoogle Scholar
  9. Blösch M, Dahl F, Dahl M, Bischoff H (2000) Die Grabwespen Deutschlands: Lebensweise, Verhalten, Verbreitung. Die Tierwelt Deutschlands. Teil 71. Goecke & Evers, KelternGoogle Scholar
  10. Bosch J, Kemp WP (2002) Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bull Entomol Res 92:3–16.  https://doi.org/10.1079/BER2001139 CrossRefPubMedGoogle Scholar
  11. Bosch J, Kemp WP (2004) Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie 35(5):469–479.  https://doi.org/10.1051/apido:2004035 CrossRefGoogle Scholar
  12. Bosch J, Kemp WP, Peterson SS (2000) Management of Osmia lignaria (Hymenoptera: Megachilidae) populations for almond pollination: Methods to advance bee emergence. Environ Entomol 29:874–883.  https://doi.org/10.1603/0046-225X-29.5.874 CrossRefGoogle Scholar
  13. Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574.  https://doi.org/10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  14. Cane JH, Griswold T, Parker FD (2007) Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Ann Entomol Soc Am 100(3):350–358.  https://doi.org/10.1603/0013-8746(2007)100%5b350:samufn%5d2.0.co;2 CrossRefGoogle Scholar
  15. Carré G, Roche P, Chifflet R, Morison N et al (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133(1–2):40–47.  https://doi.org/10.1016/j.agee.2009.05.001 CrossRefGoogle Scholar
  16. Césard N, Mouret H, Vaissiere B (2014) Urban bee hotels and public hotels (Des hotels a abeilles urbains et citoyens). Insectes 175:7–11Google Scholar
  17. Corcos D, Cerretti P, Caruso V, Mei M, Falco M, Marini L (2019) Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14:e0214068.  https://doi.org/10.1371/journal.pone.0214068 CrossRefPubMedPubMedCentralGoogle Scholar
  18. David W (2017) Fertig zum Einzug: nisthilfen für Wildbienen. Pala, DarmstadtGoogle Scholar
  19. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345(6195):401–406.  https://doi.org/10.1126/science.1251817 CrossRefPubMedGoogle Scholar
  20. Ebeling A, Klein A-M, Weisser WW, Tscharntke T (2012) Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia 169(2):453–465.  https://doi.org/10.1007/s00442-011-2205-8 CrossRefPubMedGoogle Scholar
  21. Everaars J, Strohbach MW, Gruber B, Dormann CF (2011) Microsite conditions dominate habitat selection of the red mason bee (Osmia bicornis, Hymenoptera: Megachilidae) in an urban environment: a case study from Leipzig, Germany. Landsc Urban Plan 103(1):15–23.  https://doi.org/10.1016/j.landurbplan.2011.05.008 CrossRefGoogle Scholar
  22. Fetridge ED, Ascher JS, Langellotto GA (2008) The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Ann Entomol Soc Am 101(6):1067–1077.  https://doi.org/10.1603/0013-8746-101.6.1067 CrossRefGoogle Scholar
  23. Flores LMA, Zanette LRS, Araujo FS (2018) Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodivers Conserv 27:311–328.  https://doi.org/10.1007/s10531-017-1436-3 CrossRefGoogle Scholar
  24. Flügel H (2005) Bienen in der Großstadt. Insecta 9:21–26Google Scholar
  25. Fortel L, Henry M, Guilbaud L et al (2016) Use of human-made nesting structures by wild bees in an urban environment. J Insect Conserv 20:239–253.  https://doi.org/10.1007/s10841-016-9857-y CrossRefGoogle Scholar
  26. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611.  https://doi.org/10.1126/science.1230200 CrossRefPubMedGoogle Scholar
  27. Gaston KJ, Smith RM, Thompson K, Warren PH (2005) Urban domestic gardens (II): experimental tests of methods for increasing biodiversity. Biodivers Conserv 14(2):395–413.  https://doi.org/10.1007/s10531-004-6066-x CrossRefGoogle Scholar
  28. Gathmann A, Tscharntke T (1999) Landschafts-bewertung mit bienen und wespen in nisthilfen: artenspektrum, interaktionen und bestimmungsschlüssel. Nat Landsc Baden-Württemberg 73:277–305Google Scholar
  29. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764.  https://doi.org/10.1046/j.1365-2656.2002.00641.x CrossRefGoogle Scholar
  30. Gathmann A, Greiler H-J, Tscharntke T (1994) Trap-nesting bees and wasps colonizing set-aside fields: succession and body size, management by cutting and sowing. Oecologia 98:8–14.  https://doi.org/10.1007/bf00326084 CrossRefPubMedGoogle Scholar
  31. Guedot C, Bosch J, James RR, Kemp WP (2006) Effects of three-dimensional and color patterns on nest location and progeny mortality in alfalfa leaf cutting bee (Hymenoptera: Megachilidae). J Econ Entomol 99(3):626–633.  https://doi.org/10.1603/0022-0493-99.3.626 CrossRefPubMedGoogle Scholar
  32. Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):e0185809.  https://doi.org/10.1371/journal.pone.0185809 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hartig F (2017) DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1.5. https://CRAN.R-project.org/package=DHARMa
  34. Hassell MP (2000) Host-parasitoid population dynamics. J Anim Ecol 69:543–566.  https://doi.org/10.1046/j.1365-2656.2000.00445.x CrossRefGoogle Scholar
  35. Hochberg ME, Ives AR (eds) (2000) Parasitoid population biology. Princeton University Press, PrincetonGoogle Scholar
  36. Hopfenmüller S (2016) Ein weiteres Neozoon erreicht Bayern: Der Stahlblaue Grillenjäger Isodontia mexicana (Saussure, 1867). Nachr Bayer Entomol 65(3/4):93–94Google Scholar
  37. IPBES (2016) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, BonnGoogle Scholar
  38. Jacobs HJ (2007) Die grabwespen deutschlands. Goecke & Evers, KelternGoogle Scholar
  39. Klein A-M, Steffan-Dewenter I, Tscharntke T (2004) Foraging trip duration and density of megachilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems. J Anim Ecol 73(3):517–525.  https://doi.org/10.1111/j.0021-8790.2004.00826.x CrossRefGoogle Scholar
  40. Klein A-M, Boreux V, Fornoff F et al (2018) Relevance of wild and managed bees for human well-being. Curr Opin Insect Sci 26:82–88.  https://doi.org/10.1016/j.cois.2018.02.011 CrossRefPubMedGoogle Scholar
  41. Kratochwil A, Klatt M (1989) Wildbienen-gemeinschaften (Hymenoptera Apoidea) an spontaner vegetation im siedlungsbereich der stadt freiburg im breisgau. Braun-Blanquetia 3:421–438Google Scholar
  42. Krombein KV (1967) Trap-nesting wasps and bees: life histories and associates. Smithsonian Press, Washington, DCGoogle Scholar
  43. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Soft 69:1–33.  https://doi.org/10.18637/jss.v069.i01 CrossRefGoogle Scholar
  44. Longair RW (1981) Sex ratio variations in xylophilous aculeate Hymenoptera. Evolution 35(3):597–600.  https://doi.org/10.2307/2408206 CrossRefPubMedGoogle Scholar
  45. MacIvor JS (2017) Cavity-nest boxes for solitary bees: a century of design and research. Apidologie 48(3):311–327.  https://doi.org/10.1007/s13592-016-0477-z CrossRefGoogle Scholar
  46. MacIvor JS, Packer L (2015) ‘Bee hotels’ as tools for native pollinator conservation: a premature verdict? PLoS ONE 10(3):e0122126.  https://doi.org/10.1371/journal.pone.0122126 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martins CF, Ferreira RP, Carneiro LT (2012) Influence of the orientation of nest entrance, shading, and substrate on sampling trap-nesting bees and wasps. Neotrop Entomol 41(2):105–111.  https://doi.org/10.1007/s13744-012-0020-5 CrossRefPubMedGoogle Scholar
  48. Matteson KC, Ascher JS, Langellotto GA (2008) Bee richness and abundance in New York city urban gardens. Ann Entomol Soc Am 101(1):140–150.  https://doi.org/10.1603/0013-8746(2008)101%5b140:braain%5d2.0.co;2 CrossRefGoogle Scholar
  49. McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52(10):883–890.  https://doi.org/10.1641/0006-3568(2002)052%5b0883:ubac%5d2.0.co;2 CrossRefGoogle Scholar
  50. Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  51. Notton DG (2016) Grass-carrying wasp, Isodontia mexicana (de Saussure), genus and species new to Britain (Hymenoptera: Sphecidae). Br J Entomol Nat Hist 29(4):241–245Google Scholar
  52. O’Neill K (2001) Solitary wasps: behavior and natural history. Cornell University Press, IthacaGoogle Scholar
  53. Oksanen J, Blanchet FG, Friendly M et al (2017) vegan: Community ecology package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan
  54. OpenStreetMap contributors (2015) Planet dump. https://planet.openstreetmap.org. Accessed 27 June 2018
  55. Paini DR (2004) Nesting biology of an Australian resin bee (Megachile sp; Hymenoptera: Megachilidae): a study using trap nests. Austral Entomol 43(1):10–15.  https://doi.org/10.1111/j.1440-6055.2004.00404.x CrossRefGoogle Scholar
  56. Pankiw P, Siemens B (1974) Management of Megachile rotundata in northwestern Canada for population increase. Can Entomol 106(9):1003–1008.  https://doi.org/10.4039/Ent1061003-9 CrossRefGoogle Scholar
  57. Pereira-Peixoto MH, Pufal G, Martins CF, Klein A-M (2014) Spillover of trap-nesting bees and wasps in an urban-rural interface. J Insect Conserv 18(5):815–826.  https://doi.org/10.1007/s10841-014-9688-7 CrossRefGoogle Scholar
  58. Pereira-Peixoto MH, Pufal G, Staab M et al (2016) Diversity and specificity of host-natural enemy interactions in an urban-rural interface. Ecol Entomol 41(3):241–252.  https://doi.org/10.1111/een.12291 CrossRefGoogle Scholar
  59. Peterson SS, Baird CR, Bitner RM (1994) Heat retention during incubation in nests of the alfalfa leafcutting bee (Hymenoptera: Megachilidae). J Econ Entomol 87(2):345–349.  https://doi.org/10.1093/jee/87.2.345 CrossRefGoogle Scholar
  60. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353.  https://doi.org/10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  61. Powney GD, Carvell C, Edwards M et al (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:1018.  https://doi.org/10.1038/s41467-019-08974-9 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pufal G, Steffan-Dewenter I, Klein A-M (2017) Crop pollination services at the landscape scale. Curr Opin Insect Sci 21:91–97.  https://doi.org/10.1016/j.cois.2017.05.021 CrossRefPubMedGoogle Scholar
  63. Quaranta M, Sommaruga A, Balzarini P, Felicioli A (2014) A new species for the bee fauna of Italy: megachile sculpturalis continues its colonization of Europe. Bull Insectol 67:287–293Google Scholar
  64. R Development Core Team (2017) R: a language and environment for statistical computingGoogle Scholar
  65. Rubene D, Schroeder M, Ranius T (2015) Estimating bee and wasp (Hymenoptera: Aculeata) diversity on clear-cuts in forest landscapes—an evaluation of sampling methods. Insect Conserv Divers 8(3):261–271.  https://doi.org/10.1111/icad.12105 CrossRefGoogle Scholar
  66. Rudd H, Vala J, Schaefer V (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor Ecol 10(2):368–375.  https://doi.org/10.1046/j.1526-100X.2002.02041.x CrossRefGoogle Scholar
  67. Schmid-Egger C (2004) Bestimmungsschlüssel für die deutschen Arten der solitären Faltenwespen (Hymenoptera: Eumeninae). Deutscher Jugendbund für Naturbeobachtung, HamburgGoogle Scholar
  68. Schmid-Egger C (2010) Rote Liste der Wespen Deutschlands: Hymenoptera Aculeata: Grabwespen (Ampulicidae, Crabronidae, Sphecidae), Wegwespen (Pompilidae), Goldwespen (Chrysididae), Faltenwespen (Vespidae), Spinnenameisen (Mutillidae), Dolchwespen (Scoliidae), Rollwespen (Tiphiidae) und Keulhornwespen (Sapygidae). Ampulex 1:5–39Google Scholar
  69. Staab M, Bruelheide H, Durka W et al (2016) Tree phylogenetic diversity promotes host-parasitoid interactions. Proc R Soc B 283(1834):20160275.  https://doi.org/10.1098/rspb.2016.0275 CrossRefPubMedGoogle Scholar
  70. Staab M, Pufal G, Tscharntke T, Klein A-M (2018) Trap nests for bees and wasps to analyse trophic interactions in changing environments—a systematic overview and user guide. Methods Ecol Evol 9(11):2226–2239.  https://doi.org/10.1111/2041-210X.13070 CrossRefGoogle Scholar
  71. Steffan-Dewenter I, Schiele S (2008) Do resources or natural enemies drive bee population dynamics in fragmented habitats? Ecol 89:1375–1387.  https://doi.org/10.1890/06-1323.1 CrossRefGoogle Scholar
  72. Stephen WP, Osgood CE (1965) Influence of tunnel size and nesting medium on sex ratios in a leaf-cutter bee, Megachile rotundata. J Econ Entomol 58(5):965–968.  https://doi.org/10.1093/jee/58.5.965 CrossRefGoogle Scholar
  73. Stubbs CS, Drummond FA (1997) Management of the alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae), for pollination of wild lowbush blueberry. J Kans Entomol Soc 70(2):81–93Google Scholar
  74. Threlfall CG, Walker K, Williams NSG et al (2015) The conservation value of urban green space habitats for Australian native bee communities. Biol Conserv 187:240–248.  https://doi.org/10.1016/j.biocon.2015.05.003 CrossRefGoogle Scholar
  75. Tscharntke T, Gathmann A, Steffan-Dewenter I (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. J Appl Ecol 35(5):708–719.  https://doi.org/10.1046/j.1365-2664.1998.355343.x CrossRefGoogle Scholar
  76. Wein A, Bauhus J, Bilodeau-Gauthier S et al (2016) Tree species richness promotes invertebrate herbivory on congeneric native and exotic tree saplings in a young diversity experiment. PLoS ONE 11(12):e0168751.  https://doi.org/10.1371/journal.pone.0168751 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Westrich P (2015) Wildbienen: Die anderen Bienen. Pfeil, MünchenGoogle Scholar
  78. Westrich P (2018) Die Wildbienen Deutschlands. Eugen Ulmer, StuttgartGoogle Scholar
  79. Westrich P, Frommer U, Mandery K et al (2011) Rote Liste und Gesamtartenliste der Bienen (Hymenoptera, Apidae) Deutschlands. Nat Biol Vielfalt 70(3):373–416Google Scholar
  80. Westrich P, Knapp A, Berney I (2015) Megachile sculpturalis Smith 1853 (Hymenoptera, Apidae), a new species for the bee fauna of Germany, now north of the Alps. Eucera 9:3–10Google Scholar
  81. Williams LH (1972) Trap-nesting solitary bees for students of biology. Bee World 53(3):123–135.  https://doi.org/10.1080/0005772X.1972.11097421 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Nature Conservation and Landscape Ecology, University of FreiburgFreiburgGermany
  2. 2.University of Freiburg, Freiburg Institute of Advanced Studies (FRIAS)FreiburgGermany

Personalised recommendations