Advertisement

Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status

  • Renata D. FrançosoEmail author
  • Kyle G. Dexter
  • Ricardo B. Machado
  • R. Toby Pennington
  • José R. R. Pinto
  • Reuber A. Brandão
  • James A. Ratter
Original Paper

Abstract

The Cerrado is a biodiversity hotspot in central Brazil that is the largest expanse of savanna in the Neotropics. Here, we aim to identify and delimit biogeographic districts within the Cerrado, to provide a geographic framework for conservation planning and scientific research prioritization. We used data from 588 sites with tree species inventories distributed across the entire Cerrado. To identify districts, we clustered sites based on their similarity in tree species composition. To investigate why districts differ in composition, we (1) determined the proportion of tree species in different districts that derive from other biomes, to assess the influence of neighbouring biomes upon geographically marginal districts and (2) assayed key climatic differences between districts, to test the effect of environmental factors upon compositional differences. We found seven biogeographic districts within the Cerrado. Marginal districts have a large proportion of tree species characteristic of Amazonia and Atlantic Forest, but the Cerrado endemic species are also important. Further, districts differed significantly for multiple climatic variables. Finally, to provide a preliminary conservation assessment of the different districts, we assessed their rate of land conversion and current coverage by protected areas. We found that districts in the south and southwest of the Cerrado have experienced the greatest land conversion and are the least protected, while those in the north and northeast are less impacted and better protected. Overall, our results show how biogeographic analyses can contribute to conservation planning by giving clear guidelines on which districts merit greater conservation and management attention.

Keywords

Neotropical savanna Phytogeography Indicator species Brazilian savanna Biogeographic regionalization 

Notes

Acknowledgements

R.D.F. thanks the Coordination of Improvement of Higher Level Personnel (CAPES) for the 6-month study period under the Science Without Borders Programme (Process 4893/13-1). R.B.M. (Process 303838/2016-8) and J.R.R.P. (Process: 307701/2014-0) received a research fellowship grant from National Council for Scientific and Technological Development (CNPq). K.G.D. was supported by a Leverhulme Trust International Academic Fellowship.

Supplementary material

10531_2019_1819_MOESM1_ESM.pdf (827 kb)
Supplementary material 1 (PDF 826 kb)

References

  1. Aguiar LMS, Machado RB, Françoso RD et al (2015) Cerrado: terra incógnita do século 21. Ciência Hoje 330:32–37.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  2. Alves RJV, Kolbek J (2009) Can campo rupestre vegetation be floristically delimited based on vascular plant genera? Plant Ecol 207:67–79.  https://doi.org/10.1007/s11258-009-9654-8 CrossRefGoogle Scholar
  3. Amaral AG, Munhoz CBR, Walter BMT et al (2017) Richness pattern and phytogeography of the Cerrado herb–shrub flora and implications for conservation. J Veg Sci 28:848–858.  https://doi.org/10.1111/jvs.12541 CrossRefGoogle Scholar
  4. Antonelli A, Verola CF, Parisod C, Gustafsson ALS (2010) Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol J Linn Soc 100:597–607.  https://doi.org/10.1111/j.1095-8312.2010.01438.x CrossRefGoogle Scholar
  5. Apg IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
  6. Azevedo JAR, Valdujo PH, de Nogueira CC (2016) Biogeography of anurans and squamates in the Cerrado hotspot: coincident endemism patterns in the richest and most impacted savanna on the globe. J Biogeogr 43:2454–2464.  https://doi.org/10.1111/jbi.12803 CrossRefGoogle Scholar
  7. Barbosa AM (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol 6:853–858.  https://doi.org/10.1111/2041-210X.12372 CrossRefGoogle Scholar
  8. Barbosa AM (2016) fuzzySim: Fuzzy similarity in species distributions. https://cran.r-project.org/web/packages
  9. Bernard E, Penna LAO, Araújo E (2014) Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil. Conserv Biol 28:939–950.  https://doi.org/10.1111/cobi.12298 CrossRefPubMedGoogle Scholar
  10. Beuchle R, Grecchi RC, Shimabukuro YE et al (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127.  https://doi.org/10.1016/j.apgeog.2015.01.017 CrossRefGoogle Scholar
  11. Bianchi CA, Haig SM (2012) Deforestation trends of tropical dry forests in central Brazil. Biotropica 45:395–400CrossRefGoogle Scholar
  12. Borghetti JR, Silva WLC, Nocko HR et al (2017) Agricultura irrigada sustentável no Brasil: identificação de áreas prioritárias. FAO, BrasíliaGoogle Scholar
  13. Brasil (2000) Lei No 9.985 - Institui o Sistema Nacional de Unidades de Conservação da Natureza. DOUGoogle Scholar
  14. Brooks TM, Mittermeier RA, da Fonseca GA et al (2006) Global biodiversity conservation priorities. Science 313:58–61.  https://doi.org/10.1126/science.1127609 CrossRefPubMedGoogle Scholar
  15. Bueno ML, Pennington RT, Dexter KG et al (2017) Effects of quaternary climatic fluctuations on the distribution of neotropical savanna tree species. Ecography (Cop) 40:403–414.  https://doi.org/10.1111/ecog.01860 CrossRefGoogle Scholar
  16. Caetano S, Prado DE, Pennington RT et al (2008) The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Mol Ecol 17:3147–3159.  https://doi.org/10.1111/j.1365-294X.2008.03817.x CrossRefPubMedGoogle Scholar
  17. Carmignotto AP, De Vivo M, Langguth A (2012) Mammals of the Cerrado and Caatinga: distribution patterns of the tropical open biomes of central South America. Bones, clones biomes. Hist Geogr Recent Neotrop Mamm.  https://doi.org/10.1017/cbo9781107415324.004 CrossRefGoogle Scholar
  18. Carvalho G (2017) flora: Tools for interacting with the Brazilian Flora 2020. https://cran.r-project.org/web/packages 0.3.0
  19. Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403.  https://doi.org/10.1016/j.biocon.2009.01.031 CrossRefGoogle Scholar
  20. Clements FE, Shelford VE (1939) Bioecology. Wiley, New YorkGoogle Scholar
  21. Cole MM (1960) Cerrado, Caatinga and Pantanal: the distribution and origin of the savanna vegetation of Brazil. Geogr J 126:168–179CrossRefGoogle Scholar
  22. Colli GR (2005) As origens e a diversificação da herpetofauna do Cerrado. In: Scariot A, Sousa-silva JC, Felfili JM (eds) Cerrado: Ecologia, Biodiversidade e Conservação, 1st edn. MMA, BrasíliaGoogle Scholar
  23. Costa GC, Nogueira CC, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19:883–899.  https://doi.org/10.1007/s10531-009-9746-8 CrossRefGoogle Scholar
  24. Coutinho LM (2006) O conceito de bioma. Acta Bot Brasilica 20:13–23.  https://doi.org/10.1590/S0102-33062006000100002 CrossRefGoogle Scholar
  25. Dapporto L, Ramazzotti M, Fattorini S et al (2013) Recluster: an unbiased clustering procedure for beta-diversity turnover. Ecography (Cop) 36:1070–1075.  https://doi.org/10.1111/j.1600-0587.2013.00444.x CrossRefGoogle Scholar
  26. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684.  https://doi.org/10.1111/j.1600-0706.2010.18334.x CrossRefGoogle Scholar
  27. de Lima DO, Lorini ML, Vieira MV (2018) Conservation of grasslands and savannas: a meta-analysis on mammalian responses to anthropogenic disturbance. J Nat Conserv 45:72–78.  https://doi.org/10.1016/j.jnc.2018.08.008 CrossRefGoogle Scholar
  28. de Mello PLH, Machado RB, de Nogueira CC (2015) conserving biogeography: habitat loss and vicariant patterns in endemic squamates of the Cerrado hotspot. PLoS ONE 10:e0133995.  https://doi.org/10.1371/journal.pone.0133995 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dexter KG, Lavin M, Torke BM et al (2017) Dispersal assembly of rain forest tree communities across the Amazon basin. Proc Natl Acad Sci 114:2645–2650.  https://doi.org/10.1073/pnas.1613655114 CrossRefPubMedGoogle Scholar
  30. Dice LR (1943) The biotic provinces of North America. University of Michigan Press, Ann ArboGoogle Scholar
  31. Diniz-Filho JAF (2004) Phylogenetic diversity and conservation priorities under distinct models of phenotypic evolution. Conserv Biol 18:698–704.  https://doi.org/10.1111/j.1523-1739.2004.00260.x CrossRefGoogle Scholar
  32. Diniz-Filho JAF, Bini LM, Terribile LC et al (2008) Conservation planning: a macroecological approach using the endemic terrestrial vertebrates of the Brazilian Cerrado. Fauna Flora Int Oryx 42:567–577.  https://doi.org/10.1017/S0030605308001129 CrossRefGoogle Scholar
  33. Diniz-Filho JAF, Bini LM, Oliveira G et al (2009) Macroecologia, biogeografia e áreas prioritárias para conservação no cerrado. Oecologia Bras 13:470–497.  https://doi.org/10.4257/oeco.2009.1303.05 CrossRefGoogle Scholar
  34. Diza-Uriarte R (2014) Variable selection using random forest. https://cran.r-project.org/web/packages 23
  35. dos Santos RM, de Vieira FA, Gusmão E, Nunes YRF (2007) Florística e estrutura de uma floresta estacional decidual no Parque Municipal da Sapucaia, Montes Claros (MG). Cerne 13:248–256Google Scholar
  36. DRYFLOR (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387.  https://doi.org/10.1126/science.aaf5080 CrossRefGoogle Scholar
  37. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  38. Echternacht L, Trovó M, Oliveira CT et al (2011) Areas of endemism in the Espinhaço range in Minas Gerais, Brazil. Flora-Morphol Distrib Funct Ecol Plants 206:782–791.  https://doi.org/10.1016/j.flora.2011.04.003 CrossRefGoogle Scholar
  39. Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257.  https://doi.org/10.1016/j.biocon.2012.09.020 CrossRefGoogle Scholar
  40. FAO (2015) Global forest resources assessment 2015, 1st edn. FAO, RomeGoogle Scholar
  41. Ferreira ME, Ferreira LG, Miziara F, Soares-Filho BS (2012) Modeling landscape dynamics in the central Brazilian savanna biome: future scenarios and perspectives for conservation. J Land Use Sci 8:403–421.  https://doi.org/10.1080/1747423X.2012.675363 CrossRefGoogle Scholar
  42. Flora do Brasil (2016) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br. Accessed 5 Jan 2015
  43. Françoso RD, Brandão R, Nogueira CC et al (2015) Habitat loss and the effectiveness of protected areas in the Cerrado biodiversity hotspot. Nat Conserv 13:35–40.  https://doi.org/10.1016/j.ncon.2015.04.001 CrossRefGoogle Scholar
  44. Françoso RD, Haidar RF, Machado RB (2016) Tree species of South America central savanna: endemism, marginal areas and the relationship with other biomes. Acta Bot Brasilica 30:1–9.  https://doi.org/10.1590/0102-33062015abb0244 CrossRefGoogle Scholar
  45. Gastauer M, Teixeira Braga Messias MC, Alves Meira Neto JA (2012) Floristic composition, species richness and diversity of Campo Rupestre vegetation from the Itacolomi State Park, Minas Gerais, Brazil. Environ Nat Resour Res 2:115–130.  https://doi.org/10.5539/enrr.v2n3p115 CrossRefGoogle Scholar
  46. Grace J, José JS, Meir P et al (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400.  https://doi.org/10.1111/j.1365-2699.2005.01448.x CrossRefGoogle Scholar
  47. Groves CR, Jensen DB, Valutis LL et al (2002) Planning for biodiversity conservation: putting conservation science into practice. Bioscience 52:499–512CrossRefGoogle Scholar
  48. Haidar RF, Felfili JM, Pinto JRR et al (2013) Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação. Acta Amaz 43:261–290CrossRefGoogle Scholar
  49. Heringer EP, Barroso GM, Rizzo JA, Rizzini CT (1977) A flora do Cerrado. In: Ferri MG (ed) IV Simpósio sobre o Cerrado. Editora da Universidade de São Paulo, São Paulo, pp 211–232Google Scholar
  50. Hijmans RJ, Cameron S, Parra J et al (2004) The WorldClim interpolated global terrestrial climate surfaces. http://www.worldclim.org. Accessed 10 Apr 2014
  51. IBGE (2004) Mapa de vegetação do Brasil. https://downloads.ibge.gov.br/downloads_geociencias.htm
  52. Jenkins M (2003) Prospects for biodiversity. Science 302:1175–1177.  https://doi.org/10.1126/science.1088666 CrossRefPubMedGoogle Scholar
  53. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713.  https://doi.org/10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
  54. Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeogr 37:2029–2053.  https://doi.org/10.1111/j.1365-2699.2010.02375.x CrossRefGoogle Scholar
  55. Kriticos DJ, Webber BL, Leriche A et al (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53–64.  https://doi.org/10.1111/j.2041-210X.2011.00134.x CrossRefGoogle Scholar
  56. Kunz SH, Ivanauskas NM, Martins SV et al (2008) Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do rio das Pacas, Querência-MT. Acta Amaz 38:245–254.  https://doi.org/10.1590/S0044-59672008000200007 CrossRefGoogle Scholar
  57. Leger J-B, Daudin J-J, Vacher C (2015) Clustering methods differ in their ability to detect patterns in ecological networks. Methods Ecol Evol 6:474–481.  https://doi.org/10.1111/2041-210X.12334 CrossRefGoogle Scholar
  58. Lehmann CER, Anderson TM, Sankaran M et al (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–552.  https://doi.org/10.1126/science.1247355 CrossRefPubMedGoogle Scholar
  59. Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2:18–22.  https://doi.org/10.1177/154405910408300516 CrossRefGoogle Scholar
  60. Magurran AE (1988) Ecological diversity and its measurement. Springer, DordrechtCrossRefGoogle Scholar
  61. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.  https://doi.org/10.1038/35012251 CrossRefGoogle Scholar
  62. Marimon BS, De Lima SE, Duarte TG et al (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado–Amazonian Forest ecotone. Edinburgh J Bot.  https://doi.org/10.1017/s0960428606000576 CrossRefGoogle Scholar
  63. Marini MA, Barbet-Massin M, Lopes LE, Jiguet F (2009) Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conserv Biol 23:1558–1567.  https://doi.org/10.1111/j.1523-1739.2009.01258.x CrossRefPubMedGoogle Scholar
  64. Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145.  https://doi.org/10.1038/536143a CrossRefGoogle Scholar
  65. Mews HA, Pinto JRR, Eisenlohr PV, Lenza E (2016) No evidence of intrinsic spatial processes driving neotropical savanna vegetation on different substrates. Biotropica 48:433–442.  https://doi.org/10.1111/btp.12313 CrossRefGoogle Scholar
  66. MMA (2015) Mapeamento do Uso e Cobertura do Cerrado: Projeto TerraClass Cerrado 2013. MMA, Brasília, p 67Google Scholar
  67. MMA (2016) Áreas Prioritárias para Conservação dos biomas Cerrado, Pantanal e Caatinga. DOU Portaria:81Google Scholar
  68. MMA (2017) Plano de ação para a prevenção e o controle do desmatamento. MMA, BrasíliaGoogle Scholar
  69. MMA/IBAMA (2011) Monitoramento do desmatamento nos biomas brasileiros por satélite: monitoramento do bioma Cerrado 2009–2010. MMA/IBAMA, BrasíliaGoogle Scholar
  70. Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110.  https://doi.org/10.11646/zootaxa.3782.1.1 CrossRefPubMedGoogle Scholar
  71. Morrone JJ (2018) The spectre of biogeographical regionalization. J Biogeogr 45:282–288.  https://doi.org/10.1111/jbi.13135 CrossRefGoogle Scholar
  72. Morrone JJ, Url S (1994) On the identification of areas of endemism. Syst Biol 43:438–441CrossRefGoogle Scholar
  73. Morrone JJ, Crisci JV, La Plata MD et al (1995) Historical biogeography: introduction to methods. Annu Rev Ecol Evol Syst 26:373–401CrossRefGoogle Scholar
  74. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  75. Nascimento ART, Felfili JM, Meirelles M (2004) Florística e estrutura da comunidade arbórea de um remanescente de Floresta Estacional Decidual de encosta, Monte Alegre, GO, Brasil. Acta Bot Brasilica 18:659–669CrossRefGoogle Scholar
  76. NASA Shuttle Radar Topography Mission Global 1 arc second. 2013, distributed by NASA EOSDIS Land Processes DAAC.  https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
  77. Nogueira C, Ribeiro S, Costa GC, Colli GR (2011) Vicariance and endemism in a neotropical savanna hotspot: distribution patterns of Cerrado squamate reptiles. J Biogeogr 38:1907–1922.  https://doi.org/10.1111/j.1365-2699.2011.02538.x CrossRefGoogle Scholar
  78. Novaes RML, de Filho JP, Ribeiro RA (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in eastern tropical South America. Mol Ecol 19:985–998.  https://doi.org/10.1111/j.1365-294X.2010.04530.x CrossRefPubMedGoogle Scholar
  79. Oksanen J, Blanchet FG, Kindt R et al (2014) The vegan Package Version 1.15-0. https://cran.r-project.org/web/packages
  80. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh J Bot 52:141.  https://doi.org/10.1017/S0960428600000949 CrossRefGoogle Scholar
  81. Pellizzaro KF, Cordeiro AOO, Alves M et al (2017) “Cerrado” restoration by direct seeding: field establishment and initial growth of 75 trees, shrubs and grass species. Rev Bras Bot 40:681–693.  https://doi.org/10.1007/s40415-017-0371-6 CrossRefGoogle Scholar
  82. Pennington RT, Dick CW (2004) The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans R Soc Lond B 359:1611–1622.  https://doi.org/10.1098/rstb.2004.1532 CrossRefGoogle Scholar
  83. Pinto JRR, Oliveira-Filho AT (1999) Perfil florístico e estrutura da comunidade arbórea de uma floresta de vale no Parque Nacional da Chapada dos Guimarães, Mato Grosso, Brasil. Rev Bras Botânica 22:53–67.  https://doi.org/10.1590/S0100-84041999000100008 CrossRefGoogle Scholar
  84. Pinto MP, Diniz-Filho JAF, Bini LM et al (2008) Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Divers Distrib 14:78–86.  https://doi.org/10.1111/j.1472-4642.2007.00421.x CrossRefGoogle Scholar
  85. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  86. Ramos ACS, Lemos-Filho JP, Lovato MB (2009) Phylogeographical structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. J Hered 100:206–216.  https://doi.org/10.1093/jhered/esn092 CrossRefPubMedGoogle Scholar
  87. Ratter JA, Dargie TCD (1992) An analysis of the floristic composition of 26 cerrado ares in Brazil. Edinburgh J Bot 49:235.  https://doi.org/10.1017/S0960428600001608 CrossRefGoogle Scholar
  88. Ratter JA, Bridgewater S, Atkinson R, Ribeiro JF (1996) Analysis of the floristic composition of the Brazilian cerrado vegetation II: comparison of the woody vegetation of 98 areas. Edinburgh J Bot 53:153.  https://doi.org/10.1017/S0960428600002821 CrossRefGoogle Scholar
  89. Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh J Bot 60:57–109.  https://doi.org/10.1017/S0960428603000064 CrossRefGoogle Scholar
  90. Ratter JA, Bridgewater S, Ribeiro JF et al (2011) Analysis of the floristic composition of the Brazilian cerrado vegetation IV: Presentation of a Revised Data-Base of 367 areas. Conserv. Manag. Biodivers. Cerrado Biome. http://cerrado.rbge.org.uk/cerrado/download/download.php
  91. Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. EMBRAPA, Brasília, pp 151–212Google Scholar
  92. Rizzini CT (1963) A flora do Cerrado. Simpósio sobre o Cerrado. Editora da Universidade de São Paulo, São PauloGoogle Scholar
  93. Roberts DW (2013) Package ‘labdsv.’ https://cran.r-project.org/web/packages 1–56.  https://doi.org/10.1021/es103092a.see
  94. Salgado-Labouriau ML (2005) Alguns aspectos sobre a Paleoecologia dos Cerrados. In: Scariot A, Sousa-silva JC, Felfili JM (eds) Cerrado: Ecologia, Biodiversidade e Conservação. MMA, BrasíliaGoogle Scholar
  95. Salis SM, Pereira M, Silva DA et al (2004) Fitossociologia de remanescentes de floresta estacional decidual em Corumbá, Estado do Mato Grosso do Sul, Brasil. Rev Bras Botânica 27:671–684CrossRefGoogle Scholar
  96. Sanmartín I (2012) Historical biogeography: evolution in time and space. Evol Educ Outreach 5:555–568.  https://doi.org/10.1007/s12052-012-0421-2 CrossRefGoogle Scholar
  97. Scariot AO, Sevilha AC (2005) Biodiversidade, estrutura e conservação de florestas estacionais deciduais no Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. MMA, BrasíliaGoogle Scholar
  98. Silva JMC (1997) Endemic bird species and conservation in the Cerrado region, South America. Biodivers Conserv 6:435–450CrossRefGoogle Scholar
  99. Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. Bioscience 52:225–234.  https://doi.org/10.1641/0006-3568(2002)052 CrossRefGoogle Scholar
  100. Silva DCB, Segalerba MDB, Brandão RA (2015) A representatividade das reservas particulares do patrimônio natural (RPPN) no entorno do Parque Nacional da Chapada dos Veadeiros, estado de Goiás, Brasil. Heringeriana 10:64–78Google Scholar
  101. Simon MF, Proença C (2000) Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high-altitude centers of endemism? Biol Conserv 96:279–296.  https://doi.org/10.1016/S0006-3207(00)00085-9 CrossRefGoogle Scholar
  102. Simon MF, Grether R, de Queiroz LP et al (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364.  https://doi.org/10.1073/pnas.0903410106 CrossRefPubMedGoogle Scholar
  103. Simon MF, Grether R, de Queiroz LP et al (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot 98:1201–1221.  https://doi.org/10.3732/ajb.1000520 CrossRefPubMedGoogle Scholar
  104. Siqueira MF, Peterson AT (2003) Consequences of global climate change for geographic distributions of Cerrado tree species. Biota Neotrop 3:1–14.  https://doi.org/10.1590/S1519-566X2006000600003 CrossRefGoogle Scholar
  105. Strassburg BBN, Brooks T, Feltran-Barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:1–3.  https://doi.org/10.1038/s41559-017-0099 CrossRefGoogle Scholar
  106. Szumik CA, Goloboff PA (2004) Areas of endemism: an improved optimality criterion. Syst Biol 53:968–977.  https://doi.org/10.1080/10635150490888859 CrossRefPubMedGoogle Scholar
  107. Tichý L, Chytrý M, Šmarda P (2011) Evaluating the stability of the classification of community data. Ecography (Cop) 34:807–813.  https://doi.org/10.1111/j.1600-0587.2010.06599.x CrossRefGoogle Scholar
  108. Udvardy MDF (1975) A classification of the biogeographical provinces of the world. IUCN, MorgesGoogle Scholar
  109. Vavrek MJ (2016) A comparison of clustering methods for biogeography with fossil datasets. PeerJ 4:e1720.  https://doi.org/10.7717/peerj.1720 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wallace AR (1876) The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface. Cambridge University, LondonCrossRefGoogle Scholar
  111. Werneck FP, Nogueira CC, Colli GR et al (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706.  https://doi.org/10.1111/j.1365-2699.2012.02715.x CrossRefGoogle Scholar
  112. Whittaker RJ, Araujo MB, Paul J et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23.  https://doi.org/10.1111/j.1366-9516.2005.00143.x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Graduate Program in EcologyUniversity of BrasíliaBrasíliaBrazil
  2. 2.Royal Botanic Garden EdinburghEdinburghUK
  3. 3.School of GeoSciencesUniversity of EdinburghEdinburghUK
  4. 4.Zoology Department, Biological Science InstituteUniversity of BrasíliaBrasíliaBrazil
  5. 5.Geography, University of ExeterExeterUK
  6. 6.Department of Forest Engineer, Faculty of TechnologyUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations