Advertisement

The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant

  • Donatella Cogoni
  • Elena Sulis
  • Gianluigi Bacchetta
  • Giuseppe FenuEmail author
Original Paper
  • 31 Downloads

Abstract

Narrow endemic plants are highly vulnerable to extinction due to natural factors and human disturbance because of their restricted distribution and few populations. To conserve narrow endemic and threatened plants, is important to know the factors that drive population dynamics. We investigated the factors affecting the population demography of the narrow endemic and threatened Dianthus morisianus, a psammophilous plant with only one small population in Sardinia. Demographic data was analysed by integral projection models (IPMs), and the analysis of population growth rates, elasticities and life table response experiment (LTRE) was performed. Vital rates models show that ramet volume correlates with growth, survival, flowering probability and fruit output. Our results indicate that Dianthus morisianus can be considered a typical long-lived plant with a population dynamic dominated by large ramets. The population growth rate values were always strongly positive; this indicates that the population could increase in the long term and suggests that this plant could be able to recolonise the dune system. However, this scenario seems to contrast with the high risk of extinction reported for this plant; actually the persistence of the unique population of D. morisianus is negatively affected by several factors related to the ecological conditions of coastal dunes and other external factors such as animal grazing and trampling. Conservation actions for this threatened and narrow endemic plant should be focused to strictly protect and to enhance the number of large ramets; this strategy is the key element to increase the population size and to ensure the population persistence.

Keywords

Conservation strategy Extinction risk Long-lived plant Mediterranean coastal plant Population demography Psammophilous plant 

Notes

Supplementary material

10531_2019_1757_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 kb)

References

  1. Bacchetta G, Brullo S, Casti M, Giusso del Galdo GP (2010) Taxonomic revision of the Dianthus sylvestris group (Caryophyllaceae) in central-southern Italy, Sicily and Sardinia. Nord J Bot 28:137–173.  https://doi.org/10.1111/j.1756-1051.2009.00459.x CrossRefGoogle Scholar
  2. Bacchetta G, Fenu G, Mattana E (2012) A checklist of the exclusive vascular flora of Sardinia with priority rankings for conservation. An Jard Bot Madr 69:81–89.  https://doi.org/10.3989/ajbm.2289 CrossRefGoogle Scholar
  3. Balmford A, Cowling RM (2006) Fusion or failure? The future of conservation biology. Conserv Biol 20:692–695.  https://doi.org/10.1111/j.1523-1739.2006.00434.x CrossRefGoogle Scholar
  4. Belaid AH, Maurice S, Fréville H, Carbonell D, Imbert E (2018) Predicting population viability of the narrow endemic Mediterranean plant Centaurea corymbosa under climate change. Biol Conserv 223:19–33.  https://doi.org/10.1016/j.biocon.2018.04.019 CrossRefGoogle Scholar
  5. Bellard C, Leclerc C, Courchamp F (2014) Impact of sea level rise on the 10 insular biodiversity hotspots. Global Ecol Biogeogr 23:203–212.  https://doi.org/10.1111/geb.12093 CrossRefGoogle Scholar
  6. Blondel J (2008) Humans and wildlife in Mediterranean islands. J Biogeogr 35:509–518.  https://doi.org/10.1111/j.1365-2699.2007.01819.x CrossRefGoogle Scholar
  7. Brook BW, Sodhi NS, Bradshaw CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460.  https://doi.org/10.1016/j.tree.2008.03.011 CrossRefGoogle Scholar
  8. Bruna EM, Izzo TJ, Inouye BD, Vasconcelos HL (2014) Effect of mutualist partner identity on plant demography. Ecology 95:3237–3243.  https://doi.org/10.1890/14-0481.1 CrossRefGoogle Scholar
  9. Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. Biol Conserv 170:282–291.  https://doi.org/10.1016/j.biocon.2013.12.007 CrossRefGoogle Scholar
  10. Cardinale BJ, Duffy JE, González A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67.  https://doi.org/10.1038/nature11148 CrossRefGoogle Scholar
  11. Caswell H (2000) Prospective and retrospective perturbation analyses: their roles in conservation biology. Ecology 81:619–627.  https://doi.org/10.1890/0012-9658(2000)081%5b0619:PARPAT%5d2.0.CO;2 CrossRefGoogle Scholar
  12. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer, Sunderland, MAGoogle Scholar
  13. Caujapé-Castells J, Tye A, Crawford DJ, Santos-Guerra A, Sakai A, Beaver K, Lobin W, Vincent Florens FB, Moura M, Jardim R, Gómes I, Kueffer C (2010) Conservation of oceanic island floras: present and future global challenges. Perspect Plant Ecol Evol Syst 12:107–130.  https://doi.org/10.1016/j.ppees.2009.10.001 CrossRefGoogle Scholar
  14. Cogoni D, Mattana E, Fenu G, Bacchetta G (2012) From seed to seedling: a critical transitional stage for the Mediterranean psammophilous species Dianthus morisianus (Caryophyllaceae). Plant Biosyst 146:910–917.  https://doi.org/10.1080/11263504.2011.647106 CrossRefGoogle Scholar
  15. Cogoni D, Fenu G, Concas E, Bacchetta G (2013a) The effectiveness of plant conservation measures: the Dianthus morisianus reintroduction. Oryx 47:203–206.  https://doi.org/10.1017/S003060531200169X CrossRefGoogle Scholar
  16. Cogoni D, Fenu G, Bacchetta G (2013b) Timing of emergence and microhabitat conditions effects on the seedling performance of a coastal Mediterranean plant. Ecoscience 20:131–136.  https://doi.org/10.2980/20-2-3583 CrossRefGoogle Scholar
  17. Crone EE, Menges ES, Ellis MM, Bell T, Bierzychudek P, Ehrlén J, Kaye TN, Knight TM, Lesica P, Morris WF, Oostermeijer G, Quintana-Ascencio PF, Stanley A, Ticktin T, Valverde T, Williams JL (2011) How do plant ecologists use matrix population models? Ecol Lett 14:1–8.  https://doi.org/10.1111/j.1461-0248.2010.01540.x CrossRefGoogle Scholar
  18. Cursach J, Rita J (2014) Naufraga balearica, a threatened narrow endemism of the Balearic Islands (Western Mediterranean Basin): assessing the population dynamics of two subpopulations. Plant Spec Biol 29:192–201.  https://doi.org/10.1111/1442-1984.12009 CrossRefGoogle Scholar
  19. Cursach J, Besnard A, Rita J, Fréville H (2013) Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecol 53:102–109.  https://doi.org/10.1016/j.actao.2013.09.010 CrossRefGoogle Scholar
  20. Dauer JT, Jongejans E (2013) Elucidating the population dynamics of Japanese knotweed using integral projection models. PLoS ONE 8:e75181.  https://doi.org/10.1371/journal.pone.0075181 CrossRefGoogle Scholar
  21. de Kroon H, Van Groenendael J, Ehrlén J (2000) Elasticities: a review of methods and model limitations. Ecology 81:607–618. https://www.jstor.org/stable/177363
  22. Doak DF, Himes Boor GK, Bakker VJ, Morris WF, Louthan A, Morrison SA, Stanley A, Crowder LB (2015) Recommendations for improving recovery criteria under the US Endangered Species Act. Bioscience 65:189–199.  https://doi.org/10.1093/biosci/biu215 CrossRefGoogle Scholar
  23. Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708.  https://doi.org/10.1890/0012-9658(2000)081%5b0694:SSSAAN%5d2.0.CO;2 CrossRefGoogle Scholar
  24. Ellner SP, Rees M (2006) Integral projection models for species with complex demography. Am Nat 167:410–428. https://www.jstor.org/stable/10.1086/499438
  25. Fenu G, Cogoni D, Ulian T, Bacchetta G (2013) The impact of human trampling on a threatened coastal Mediterranean plant: the case of Anchusa littorea Moris (Boraginaceae). Flora 208:104–110.  https://doi.org/10.1016/j.flora.2013.02.003 CrossRefGoogle Scholar
  26. Fenu G, Cogoni D, Pinna MS, Bacchetta G (2015) Threatened Sardinian vascular flora: a synthesis of 10 years of monitoring activities. Plant Biosyst 149:473–482.  https://doi.org/10.1080/11263504.2014.1000424 CrossRefGoogle Scholar
  27. Fenu G, Cogoni D, Bacchetta G (2016) The role of fencing in the success of threatened plant species translocation. Plant Ecol 217:207–217.  https://doi.org/10.1007/s11258-015-0517-1 CrossRefGoogle Scholar
  28. Fenu G, Cogoni D, Navarro FB, Concas E, Bacchetta G (2017a) The importance of the Cisto-Lavanduletalia coastal habitat on population persistence of the narrow endemic Dianthus morisianus (Caryophyllaceae). Plant Spec Biol 322:156–168.  https://doi.org/10.1111/1442-1984.12138 CrossRefGoogle Scholar
  29. Fenu G, Bacchetta G, Giacanelli V, Gargano D, Montagnani C, Orsenigo S, Cogoni D, Rossi G, Conti F, Santangelo A, Pinna MS, Bartolucci F, Domina G, Oriolo G, Blasi C, Genovesi P, Abeli T, Ercole S (2017b) Conserving plant diversity in Europe: outcomes, criticisms and perspectives of the Habitats Directive application in Italy. Biodivers Conserv 26:309–328.  https://doi.org/10.1007/s10531-016-1244-1 CrossRefGoogle Scholar
  30. Fois M, Bacchetta G, Cuena Lombraña A, Cogoni D, Pinna MS, Sulis E, Fenu G (2018) Using extinctions in species distribution models to evaluate and predict threats: a contribution to the plant conservation planning on the Island of Sardinia. Environ Conserv 45:11–19.  https://doi.org/10.1017/S0376892917000108 CrossRefGoogle Scholar
  31. Franco M, Silvertown J (2004) Comparative demography of plants based upon elasticities of vital rates. Ecology 85:531–538. http://oro.open.ac.uk/id/eprint/2299
  32. Fréville H, Colas B, Riba M, Caswell H, Mignot A, Imbert E, Olivieri I (2004) Spatial and temporal demographic variability in the endemic plant species Centaurea corymbosa (Asteraceae). Ecology 85:694–703.  https://doi.org/10.1890/03-0119 CrossRefGoogle Scholar
  33. García MB (2003) Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conserv Biol 17:1672–1680.  https://doi.org/10.1111/j.1523-1739.2003.00030.x CrossRefGoogle Scholar
  34. García D, Zamora R (2003) Persistence, multiple demographic strategies and conservation in long-lived Mediterranean plants. J Veg Sci 14:921–926.  https://doi.org/10.1111/j.1654-1103.2003.tb02227.x CrossRefGoogle Scholar
  35. Garcı́a MB, Guzmán D, Goñi D (2002) An evaluation of the status of five threatened plant species in the Pyrenees. Biol Conserv 103:151–161.  https://doi.org/10.1016/S0006-3207(01)00113-6 CrossRefGoogle Scholar
  36. García MB, Picò FX, Ehrlén J (2008) Life span correlates with population dynamics in perennial herbaceous plants. Am J Bot 95:258–262. https://www.jstor.org/stable/27733413
  37. Gray A (2018) The ecology of plant extinction: rates, traits and island comparisons. Oryx.  https://doi.org/10.1017/S0030605318000315
  38. Harter DEV, Irl SDH, Seo B, Steinbauer MJ, Gillespie R, Triantis KA, Fernández-Palacios JM, Beierkuhnlein C (2015) Impacts of global climate change on the floras of oceanic islands-Projections, implications and current knowledge. Perspect Plant Ecol Evol Syst 17:160–183.  https://doi.org/10.1016/j.ppees.2015.01.003 CrossRefGoogle Scholar
  39. Huang J, Huang J, Liu C, Zhang J, Lu X, Ma K (2016) Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol Conserv 198:104–112.  https://doi.org/10.1016/j.biocon.2016.04.007 CrossRefGoogle Scholar
  40. Jacquemyn H, Brys R, Hermy M, Willems JH (2007) Long-term dynamics and population viability in one of the last populations of the endangered Spiranthes spiralis (Orchidaceae) in the Netherlands. Biol Conserv 134:14–21.  https://doi.org/10.1016/j.biocon.2006.07.016 CrossRefGoogle Scholar
  41. Jongejans E, de Kroon H (2005) Space versus time variation in the population dynamics of three co-occurring perennial herbs. J Ecol 93:681–692.  https://doi.org/10.1111/j.1365-2745.2005.01003.x CrossRefGoogle Scholar
  42. Kew (2017) The State of the World’s Plants. Royal Botanic Gardens, KewGoogle Scholar
  43. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc National Acad Sci 106:9322–9327.  https://doi.org/10.1073/pnas.0810306106 CrossRefGoogle Scholar
  44. Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer J-Y, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12:145–161.  https://doi.org/10.1016/j.ppees.2009.06.002 CrossRefGoogle Scholar
  45. Lavergne S, Thuiller W, Molina J, Debussche M (2005) Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region. J Biogeogr 32:799–811.  https://doi.org/10.1111/j.1365-2699.2005.01207.x CrossRefGoogle Scholar
  46. Li SL, Yu FH, Werger MJA, Dong M, Zuidema PA (2011) Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. J Ecol 99:610–620.  https://doi.org/10.1111/j.1365-2745.2010.01777.x Google Scholar
  47. Li SL, Yu FH, Werger MJ, Dong M, During HJ, Zuidema PA (2015) Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis. Sci Rep-UK 5:8935.  https://doi.org/10.1038/srep08935 CrossRefGoogle Scholar
  48. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Li S (2015) Systems integration for global sustainability. Science 347:6925.  https://doi.org/10.1126/science.1258832 Google Scholar
  49. Médail F (2017) The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Region Environ Change 17:1775–1790.  https://doi.org/10.1007/s10113-017-1123-7 CrossRefGoogle Scholar
  50. Menges ES (1991) The application of minimum viable population theory to plants. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, Oxford, pp 47–61Google Scholar
  51. Menges E (2000) Population viability analysis in plants: challenges and opportunities. Trends Ecol Evol 15:51–56.  https://doi.org/10.1016/S0169-5347(99)01763-2 CrossRefGoogle Scholar
  52. Menges ES, Pace-Aldana B, Haller SJ, Smith SA (2016) Ecology and conservation of the endangered legume Crotalaria avonensis in Florida scrub. Southeast Nat 15:549–574.  https://doi.org/10.1656/058.015.0318 CrossRefGoogle Scholar
  53. Merow C, Dahlgren JP, Metcalf CJE, Childs DZ, Evans MEK, Jongejans E, Record S, Rees M, Salguero-Gómez R, McMahon SM (2014) Advancing population ecology with integral projection models: a practical guide. Methods Ecol Evol 5:99–110.  https://doi.org/10.1111/2041-210X.12146 CrossRefGoogle Scholar
  54. Metcalf CJE, McMahon SM, Salguero-Gómez R, Jongejans E (2013) IPMpack: an R package for integral projection models. Methods Ecol Evol 4:195–200.  https://doi.org/10.1111/2041-210x.12001 CrossRefGoogle Scholar
  55. Metcalf CJE, McMahon SM, Salguero-Gómez R, Jongejans E, Merow C (2014) IPMpack: an R package for demographic modeling with Integral Projection Models (v. 2.1). Accessed on 8 March 2018Google Scholar
  56. Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates Inc., SunderlandGoogle Scholar
  57. Nebot A, Cogoni D, Fenu G, Bacchetta G (2016) Floral biology and breeding system of the narrow endemic Dianthus morisianus Vals. (Caryophyllaceae). Flora 219:1–7.  https://doi.org/10.1016/j.flora.2015.12.004 CrossRefGoogle Scholar
  58. Nebot A, Cogoni D, Fenu G, Bacchetta G (2018) Comparing the flowering phenology between the only natural and a translocated population of Dianthus morisianus. Botany Lett 165(3–4):506–513.  https://doi.org/10.1080/23818107.2018.1505546 CrossRefGoogle Scholar
  59. Nicolè F, Dahlgren JP, Vival A, Till-Bottraud I, Ehrlén J (2011) Interdependent effects of habitat quality and climate on population growth of an endangered plant. J Ecol 99:1211–1218.  https://doi.org/10.1111/j.1365-2745.2011.01852.x CrossRefGoogle Scholar
  60. Nychka D, Furrer R, Sain S (2014) fields: Tools for spatial data. R package version 7.1. http://CRAN.R-project.org/package=fields. Accessed on 8 March 2018
  61. Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398.  https://doi.org/10.1016/S0006-3207(03)00127-7 CrossRefGoogle Scholar
  62. Orsenigo S, Montagnani C, Fenu G, Gargano D, Peruzzi L, Abeli T, Alessandrini A, Bacchetta G, Bartolucci F, Bovio M, Brullo C, Brullo S, Carta A, Castello M, Cogoni D, Conti F, Domina G, Foggi B, Gennai M, Gigante D, Iberite M, Lasen C, Magrini S, Perrino EV, Prosser F, Santangelo A, Selvaggi A, Stinca A, Vagge I, Villani MC, Wagensommer RP, Wilhalm T, Tartaglini N, Duprè E, Blasi C, Rossi G (2018) Red Listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. Biol Conserv 224:213–222.  https://doi.org/10.1016/j.biocon.2018.05.030 CrossRefGoogle Scholar
  63. Pfeifer M, Wiegand K, Heinrich W, Jetschke G (2006) Long-term demographic fluctuations in an orchid species driven by weather: implications for conservation planning. J Appl Ecol 43:313–324.  https://doi.org/10.1111/j.1365-2664.2006.01148.x CrossRefGoogle Scholar
  64. Pinna MS, Cañadas EM, Bacchetta G (2014) Initial constraints in seedling dynamics of Juniperus macrocarpa Sm. Plant Ecol 215:853–861.  https://doi.org/10.1007/s11258-014-0337-8 CrossRefGoogle Scholar
  65. Pino J, Picó FX, de Roa E (2007) Population dynamics of the rare plant Kosteletzkya pentacarpos (Malvaceae): a nine-year study. Bot J Linn Soc 153:455–462.  https://doi.org/10.1111/j.1095-8339.2007.00628.x CrossRefGoogle Scholar
  66. Pisanu S, Farris E, Filigheddu R, García MB (2012) Demographic effects of large, introduced herbivores on a long-lived endemic plant. Plant Ecol 213:1543–1553.  https://doi.org/10.1007/s11258-012-0110-9 CrossRefGoogle Scholar
  67. Ramula S, Rees M, Buckley YM (2009) Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. J Appl Ecol 46:1048–1053.  https://doi.org/10.1111/j.1365-2664.2009.01706.x CrossRefGoogle Scholar
  68. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ Accessed on 8 February 2018
  69. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501.  https://doi.org/10.1073/pnas.0509060102 CrossRefGoogle Scholar
  70. Salguero-Gómez R, Jones OR, Archer CR, Buckley YM, Che-Castaldo J, Caswell H, Hodgson D, Scheuerlein A, Conde DA, Brinks E, de Buhr H, Farack C, Gottschalk F, Hartmann A, Henning A, Hoppe G, Romer G, Runge J, Ruoff T, Wille J, Zeh S, Davison R, Vieregg D, Baudisch A, Altwegg R, Colchero F, Dong M, de Kroon H, Lebreton JD, Metcalf CJE, Neel MM, Parker IM, Takada T, Valverde T, Velez-Espino LA, Wardle GM, Franco M, Vaupel JW (2015) The COMPADRE Plant Matrix Database: an open online repository for plant demography. J Ecol 103:202–218.  https://doi.org/10.1111/1365-2745.12334 CrossRefGoogle Scholar
  71. Salguero-Gómez R, Jones OR, Jongejans E, Blomberg SP, Hodgson DJ, Mbeau-Ache C, Zuidema PA, de Kroon H, Buckley YM (2016) Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc Natl Acad Sci 113:230–235.  https://doi.org/10.1073/pnas.1506215112 CrossRefGoogle Scholar
  72. Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606. https://www.jstor.org/stable/1941718
  73. Smith SA, Menges ES (2016) Population dynamics and life history of Euphorbia rosescens, a perennial herb endemic to Florida scrub. PLoS ONE 11:e0160014.  https://doi.org/10.1371/journal.pone.0160014 CrossRefGoogle Scholar
  74. Sulis E, Bacchetta G, Cogoni D, Fenu G (2018) Short-term population dynamics of Helianthemum caput-felis, a perennial Mediterranean coastal plant: a key element for an effective conservation program. Syst Biodivers 16(8):774–783.  https://doi.org/10.1080/14772000.2018.1492469 CrossRefGoogle Scholar
  75. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu W, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103.  https://doi.org/10.1038/nature14910 CrossRefGoogle Scholar
  76. Weigelt P, Jetz W, Kreft H (2013) Bioclimatic and physical characterization of the world’s islands. Proc Natl Acad Sci USA 110:15307–15312.  https://doi.org/10.1073/pnas.1306309110 CrossRefGoogle Scholar
  77. Whittaker RJ, Fernandez-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  78. Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA (2017) Island Biogeography: taking the long view of nature’s laboratories. Science 357:eaam8326.  https://doi.org/10.1126/science.aam8326 CrossRefGoogle Scholar
  79. Williams JL, Ellis MM, Bricker MC, Brodie JF, Parsons EW (2011) Distance to stable stage distribution in plant populations and implications for near-term population projections. J Ecol 99:1171–1178.  https://doi.org/10.1111/j.1365-2745.2011.01845.x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro Conservazione Biodiversità (CCB) - Dipartimento di Scienze della Vita e dell’AmbienteUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations