Advertisement

Biodiversity and Conservation

, Volume 28, Issue 6, pp 1361–1388 | Cite as

An expert knowledge approach for mapping vegetation cover based upon free access cartographic data: the Tehuacan-Cuicatlan Valley, Central Mexico

  • Cloe Xochitl Pérez-Valladares
  • Alejandro VelázquezEmail author
  • Ana Isabel Moreno-Calles
  • Jean-François Mas
  • Ignacio Torres-García
  • Alejandro Casas
  • Selene Rangel-Landa
  • José Blancas
  • Mariana Vallejo
  • Oswaldo Téllez-Valdés
Original Paper
  • 102 Downloads

Abstract

Vegetation maps have been key tools for synthesizing large amounts of information and supporting geographical location of biodiversity. Traditional vegetation map development demands acquisition and processing of expensive supplies, expertise of qualified interpreters and extensive fieldwork; nevertheless vegetation maps are crucial in areas where conservation policies ought to be rapidly produced, as it is the case of the Tehuacán-Cuicatlán Valley which was recently declared a hotspot of biocultural heritage of highly important conservation. Currently, mapping approaches that integrate plant diversity outcomes, expert knowledge and land cover information are still scarce. In this study we combined free access cartographic data and expert knowledge to develop a vegetation map, in order to provide basic criteria for decisions on conservation of regional biocultural diversity. Bioclimatic regionalization, georeferenced fieldwork, over 30 years of vegetation outcomes and expert knowledge enabled us to develop a novel method for vegetation mapping. Climatic, lithologic and topographic affinities were used as main criteria for map class reassignment. Field verification allowed quantifying an acceptable certainty of class assignation. Our comprehensive approach proved fundamental for developing a detailed vegetation map elucidating complex vegetation diversity patterns. The classification scheme here proposed increased almost twofold that of the original land cover map. Regarding the outstanding plant diversity harbored, the extent of the study area (~ 12 000 km2) and the scale of the vegetation map obtained, we regarded the map certainty as meaningful. To conclude, the present vegetation map proved to be a powerful communication tool to facilitate sound conservation policy making.

Keywords

Vegetation mapping Plant community Free-access data Bioclimatic regionalization Tehuacán-Cuicatlan Biosphere World heritage 

Notes

Acknowledgements

The first author acknowledges the support received through a PhD scholarship granted by the Consejo Nacional de Ciencia y Tecnología. The Management and Evolution of Genetic Resources Laboratory (IIES, UNAM) provided georeferenced sites of vegetation samples and assess the preliminary maps. The research was supported by the projects IN209214 and IN206217, granted by the DGAPA, UNAM. I. Franch and P. Urquijo made recommendations on an earlier version. The Academic Writing Office of UNAM helped editing the final version.

Funding

Universidad Nacional Autónoma de México via its PAEP PhD program provided financial support for field work. CONACyT provided a scholarship program to the first author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10531_2019_1723_MOESM1_ESM.doc (48 kb)
Online resource 1. Parameters used for the bioclimatic regionalization of Tehuacán-Cuicatlán Valley. Supplementary material 1 (DOC 48 kb)
10531_2019_1723_MOESM2_ESM.doc (56 kb)
Online resource 2. Plant communities’ map of Tehuacán-Cuicatlán Valley. Supplementary material 2 (DOC 57 kb)

References

  1. Alexander RW, Millington AC (2000) Vegetation mapping: from patch to planet. Wiley, HobokenGoogle Scholar
  2. Ángel RD, Mandujano S (2017) Density of white-tailed deer in relation to vegetation in a landscape of northern Veracruz. Therya 8(2):109–116.  https://doi.org/10.12933/therya-17-475 Google Scholar
  3. Araújo MB, Thuiller W, Williams PH, Reginster I (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Glob Ecol Biogeogr 14(1):17–30.  https://doi.org/10.1111/j.1466-822X.2004.00128.x Google Scholar
  4. Arellanes Y, Casas A, Arellanes A, Vega E, Blancas J et al (2013) Influence of traditional markets on plant management in the Tehuacán Valley. J Ethnobiol Ethnomed 9(1):38.  https://doi.org/10.1186/1746-4269-9-38 Google Scholar
  5. Arellano E, Casas A (2003) Morphological variation and domestication of Escontria chiotilla (Cactaceae) under silvicultural management in the Tehuacán Valley, Central Mexico. Genet Resour Crop Evol 50(4):439–453.  https://doi.org/10.1023/A:102390270 Google Scholar
  6. Arizaga S, Martínez-Cruz J, Salcedo-Cabrales M, Bello-González M (2009) Manual de biodiversidad de encinos michoacanos. Secretaria de medio ambiente y recursos naturales, MéxicoGoogle Scholar
  7. Austin MP (1987) Models for the analysis of species response to environmental gradients. Vegetation 69:35–45Google Scholar
  8. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118.  https://doi.org/10.1016/S0304-3800(02)00205-3 Google Scholar
  9. Blancas J, Casas A, Rangel-Landa S et al (2010) Plant management in the tehuacán-cuicatlán Valley, Mexico. Econ Bot 64(4):287–302.  https://doi.org/10.1007/s12231-010-9133-0 Google Scholar
  10. Blancas J, Casas A, Pérez-Salicrup D, Caballero J, Vega E (2013) Ecological and socio-cultural factors influencing plant management in Náhuatl communities of the Tehuacán Valley, Mexico. J Ethnobiol Ethnomed 9(1):39.  https://doi.org/10.1186/1746-4269-9-39 Google Scholar
  11. Bocco G, Mendoza M, Masera OR (2001) La dinámica del cambio del uso del suelo en Michoacán: Una propuesta metodológica para el estudio de los procesos de deforestación. Investig Geogr 44:18–36Google Scholar
  12. Brunet J (1967) Geologic studies. In D. Byers (ed) The prehistory of the Tehuacán Valley: environment and subsistence, vol I, 1st ed. University of Texas Press, Austin, pp 66–90Google Scholar
  13. Campos N, Casas A, Moreno-Calles AI et al (2016) Plant management in agroforestry systems of Rosetophyllous forests in the Tehuacán Valley, Mexico. Econ Bot 70(3):254–269.  https://doi.org/10.1007/s12231-016-9352-0 Google Scholar
  14. Capelo J, Mesquita S, Costa JC, Ribeiro S, Arsénio P, Neto C et al (2007) A methodological approach to potential vegetation modeling using GIS techniques and phytosociological expert-knowledge: application to mainland Portugal. Phytocoenologia 37(3–4):399–415.  https://doi.org/10.1127/0340-269X/2007/0037-0399 Google Scholar
  15. Cardel Y, Rico-Gray V, García-Franco JG, Thien LB (1997) Ecological status of Beaucarnea gracilis, an endemic species of the semiarid Tehuacán Valley, México. Conserv Biol 11(2):367–374.  https://doi.org/10.1046/j.1523-1739.1997.95322 Google Scholar
  16. Casas A, Caballero J, Mapes C, Zárate S (1997) Manejo de la vegetación, domesticación de plantas y origen de la agricultura en mesoamérica. Boletín de la Sociedad Botánica de México 61:31–47Google Scholar
  17. Casas A, Valiente-Banuet A, Viveros L, Caballero J, Cortés L, Dávila P, Lira R, Rodriguez I (2001) Plant resources of the Tehuacan-Cuicatlan valley, Mexico. Econ Bot 55:129–166.  https://doi.org/10.1007/BF02864551 Google Scholar
  18. Casas A, Rangel-Landa S, Torres I, Pérez-Negrón E, Solís L, Parra F, Delgado A, Blancas J, Farfán B, Moreno-Calles AI (2008) In situ management and conservation of plant resources in the Tehuacán-Cuicatlán Valley, Mexico: an ethnobotanical and ecological approach. In: Albuquerque U (ed) Recent trends in ethnopharmacology and ethnobotany. Research Signpost Kerala, pp 1–23Google Scholar
  19. Casas A, Camou A, Otero-Arnaiz A et al (2015) Manejo tradicional de biodiversidad y ecosistemas en Mesoamérica: el Valle de Tehuacán. Investigación ambiental Ciencia y política pública 6(2)Google Scholar
  20. Casas A, Blancas J, Otero-Arnaiz A et al (2016a) Evolutionary ethnobotanical studies of incipient domestication of plants in Mesoamerica. In: Lira R, Casas A, Blancas J (eds) Ethnobotany of Mexico. Springer, New York, pp 257–285Google Scholar
  21. Casas A, Lira R, Torres et al (2016b) Ethnobotany for sustainable ecosystem management: A regional perspective in the Tehuacán Valley. In: Lira R., Casas A, Blancas J (eds) Ethnobotany of Mexico, 1st ed. Springer, New York, pp 179–206Google Scholar
  22. Chuvieco E (2002) Teledetección ambiental. La observación de la Tierra desde el Espacio. Ed. Ariel. Madrid, EspañaGoogle Scholar
  23. Cumming GS, Allen CR (2017) Protected areas as social-ecological systems: perspectives from resilience and social-ecological systems theory. Ecol Appl 27(6):1709–1717.  https://doi.org/10.1002/eap.1584 Google Scholar
  24. Dávalos-Álvarez G, Nieto-Samaniego F, Alaniz-Álvarez S et al (2007) Estratigrafía cenozoica de la región de Tehuacán y su relación con el sector norte de la falla de Oaxaca. Rev Mex Ciencias Geol 24:197–215Google Scholar
  25. Dávila P, Arizmendi MC, Valiente-Banuet A, Villaseñor J, Casas A, Lira R (2002) Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodivers Conserv 11:421–442.  https://doi.org/10.1023/A:1014888822920 Google Scholar
  26. Erickson CL (2006) The domesticated landscapes of the Bolivian Amazon. In Balée W, Erickson C (eds) Time and complexity in historical ecology: studies in the Neotropical lowlands, 1st ed. Columbia University Press, New York, pp 235–278Google Scholar
  27. Fabrikant SI (2001) Spatialization. The international encyclopedia of geography.  https://doi.org/10.1002/9781118786352.wbieg0812
  28. Farías V, Hernández O, Arizmendi MDC, Téllez O et al (2016) Registro notable de águila real (Aquila chrysaetos) en la Reserva de la Biosfera Tehuacán-Cuicatlán, Puebla, México. Rev Mex Biodivers 87(3):1153–1158.  https://doi.org/10.1016/j.rmb.2016.06.001 Google Scholar
  29. Fernández-Eguiarte A, Romero R, Zavala J (2014) Metodologías empleadas en el atlas climático digital de México para la generación de mapas de alta resolución. Geoacta 19:165–173Google Scholar
  30. Figueroa F, Sánchez-Cordero V (2008) Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodivers Conserv 17(13):3223.  https://doi.org/10.1007/s10531-008-9423-3 Google Scholar
  31. Fuentes-Aguilar R (1971) Metodologías para el análisis geográfico de la zona de San Juan Raya. Boletin del instituto de Geografía, pp 324–368Google Scholar
  32. Gallopín GC (2006) Linkages between vulnerability, resilience, and adaptive capacity. Global Environ Chang 16(3):293–303.  https://doi.org/10.1016/j.gloenvcha.2006.02.004 Google Scholar
  33. García, E (1998) Climas. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Shapefile http://www.conabio.gob.mx/informacion/metadata/gis/clima1mgw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
  34. Gebhardt S, Wehrmann T, Muñoz MA, Maeda P, Bishop J, Schramm M, Kopeinig R, Cartus O, Kelldonfer J, Ress R, Santos LA, Schmidt M (2014) MAD-MEX: automatic wall-towall land cover monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens 6:3923–3943.  https://doi.org/10.3390/rs6053923 Google Scholar
  35. Goettsch B, Hilton-Taylor C, Cruz-Piñón G et al (2015) High proportion of cactus species threatened with extinction. Nat Plants 1(10):15142.  https://doi.org/10.1038/NPLANTS.2015.142 Google Scholar
  36. González-García F, Pérez-Solano LA, Eric Ramírez-Bravo O (2012) Localidades adicionales en la distribución geográfica de la pava cojolita (Penelope purpurascens) en Puebla y Oaxaca, México. Huitzil 13(1):61–67.  https://doi.org/10.28947/hrmo.2012.13.1.149 Google Scholar
  37. Greenwood S, Ruiz-Benito P, Martínez-Vilalta J et al (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20(4):539–553.  https://doi.org/10.1111/ele.12748 Google Scholar
  38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978.  https://doi.org/10.1002/joc.1276 Google Scholar
  39. Instituto Nacional de estadística y Geografía (INEGI) 2015 Guía para la interpretación de cartografía: Uso de suelo y Vegetación. Escala 1:250,000. Serie V. MéxicoGoogle Scholar
  40. Knight JF, Lunetta RS (2003) An experimental assessment of minimum mapping unit size. IEEE Trans Geosci Remote Sens 41(9):2132–2134Google Scholar
  41. Lira R, Casas A, Rosas-López R et al (2009) Traditional knowledge and useful plant richness in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot 63(3):271–287.  https://doi.org/10.1007/s12231-009-9075-6 Google Scholar
  42. Liu D, Zuo H (2012) Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim Chang 115(3–4):629–666.  https://doi.org/10.1126/science.1058104 Google Scholar
  43. Liu J, Linderman M, Ouyang Z, An L, Yang J, Zhang H (2001) Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science 292(5514):98–101.  https://doi.org/10.1126/science.1058104 Google Scholar
  44. López-Ramos E (1981) Geología de México. 2nd ed. México, Edición EscolarGoogle Scholar
  45. MacNeish R (1967) A summary of the subsistence. In Byers D (ed) The prehistory of the Tehuacán Valley: environment and subsistence, vol 1, 1st ed. University of Texas Press, Austin, pp 14–27Google Scholar
  46. Mas JF, Couturier S, Paneque-Gálvez J. Skutsch M, Pérez-Vega A, Castillo-Santiago MA, Bocco G (2016) Comment on Gebhardt et al. MAD-MEX: Automatic wall-to-wall land cover monitoring for the mexican REDD-MRV Program using all Landsat data. Remote Sens. 2014, 6:3923–3943. Remote Sensing 8(7):533.  https://doi.org/10.3390/rs8070533
  47. Méndez-Larios I, Villaseñor JL, Lira R, Morrone JJ, Davila P, Ortiz E (2005) Toward the identification of a core zone in the Tehuacán-Cuicatlán Biosphere Reserve, Mexico, based on parsimony analysis of endemicity of flowering plant species. Interciencia 30(5):267–274Google Scholar
  48. Miguel-Talonia C, Téllez-Valdés O, Murguía-Romero M (2014) Las cactáceas del Valle de Tehuacán-Cuicatlán, México: estimación de la calidad del muestreo. Rev Mex Biodivers 85(2):436–444.  https://doi.org/10.7550/rmb.31390 Google Scholar
  49. Miranda F, Hernández-X E (1963) Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botanica de México, México, DF.  https://doi.org/10.17129/botsci.1084
  50. Moreno-Calles AI, Casas A, Blancas J et al (2010) Agroforestry systems and biodiversity conservation in arid zones: the case of the Tehuacán Valley, Central México. Agrofor Syst 80(3):315–331.  https://doi.org/10.1007/s10457-010-9349-0 Google Scholar
  51. Moreno-Calles AI, Casas A, García-Frapolli E, Torres-García I (2012) Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: their management and role in people’s subsistence. Agrofor Syst 84(2):207–226Google Scholar
  52. Moreno-Calles AI, Toledo VM, Casas A (2013) Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Bot Sci 91(4):375–398.  https://doi.org/10.1007/s10457-011-9460-x Google Scholar
  53. Mueller-Dombois D (1984) Classification and mapping of plant communities: a review with emphasis on tropical vegetation. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing, 1st ed. Wiley, Chichester, pp 21–88Google Scholar
  54. Odling-Smee FJ, Laland KN, Feldman MW (1996) Niche construction. Am Nat 147(4):641–648Google Scholar
  55. Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57.  https://doi.org/10.1016/j.rse.2014.02.015 Google Scholar
  56. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial Ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938Google Scholar
  57. Ornelas JF, Ordano M, Hernández A, López JC, Mendoza L, Perroni Y (2002) Nectar oasis produced by Agave marmorata Roezl (Agavaceae) lead to spatial and temporal segregation among nectarivores in the Tehuacán Valley, México. J Arid Environ 52(1):37–51.  https://doi.org/10.1006/jare.2002.0971 Google Scholar
  58. Pedrotti F (2013) Plant and vegetation mapping. Springer, New YorkGoogle Scholar
  59. Pérez-Negrón E, Casas A (2007) Use, extraction rates and spatial availability of plant resources in the Tehuacán-Cuicatlán Valley, Mexico: The case of Santiago Quiotepec, Oaxaca. J Arid Environ 70(2):356–379.  https://doi.org/10.1016/j.jaridenv.2006.12.016 Google Scholar
  60. Priego-Santander AGP, Selma MA (2017) Análisis de la complejidad y heterogeneidad de los paisajes de México. Papeles de Geografía.  https://doi.org/10.6018/geografia/2017/259991
  61. Priego-Santander AG, Bocco Verdinelli G, Mendoza Cantú M, Garrido Pérez A (2010) Propuesta para la Generación Semi-automatizada de Paisajes. Centro de Investigaciones en Geografía Ambiental, UNAM. México, Fundamentos y Métodos, p 104Google Scholar
  62. Rangel-Landa S, Rivera-Lozoya E, Casas A (2014) Manejo de las palmas Brahea spp (Arecaceae) por el pueblo ixcateco de Santa María Ixcatlán, Oaxaca, México. Gaia Scientia, volumen especial Poblaciones tradicionales, 62–78Google Scholar
  63. Ribot JC, Najam A, Watson G (2005) Climate variation, vulnerability and sustainable development in the semi-arid tropics. In: Ribot JC, Magalhães AR, Panagides S (eds) Climate variability, climate change and social vulnerability in the semi-arid tropics, 2nd ed. Cambridge University Press, CambridgeGoogle Scholar
  64. Rivas-Martínez S (2005) Avances en geobotánica. Worlwide Biocimatic Classification System 1996–2018, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org/book/ranf2005.pdf
  65. Rivas-Martínez S, Rivas-Saénz S, Penas A (2011) Worldwide bioclimatic classification system. Global Geobot 1:1–634.  https://doi.org/10.5616/gg110001 Google Scholar
  66. Parra F, Casas A, Rocha V, et al. (2014) Spatial distribution of genetic variation of Stenocereus pruinosus (Otto) Buxb. In Mexico: analyzing evidence on the origins of its domestication. Genetic Resources Crop & Evolution 62(6):893–912.  https://doi.org/10.1007/s10722-014-0199-x
  67. Rodríguez-Arévalo I, Casas A, Lira R, Campos J (2006) Uso, manejo y procesos de domesticación de Pachycereus hollianus (FAC Weber) Buxb.(Cactaceae), en el Valle de Tehuacán-Cuicatlán, México. Interciencia 31(9):677–685Google Scholar
  68. Rojas-Martínez AER, Valiente-Banuet AV (1996) Análisis comparativo de la quiropterofauna del Valle de Tehuacán-Cuicatlán, Puebla-Oaxaca. Acta Zoológica Mexicana (Nueva Serie) 67:1–23Google Scholar
  69. Rzedowski J (1978) La vegetación de México, 1st ed. Mexico: Ed. LimusaGoogle Scholar
  70. Schmidt KS, Skidmore AK, Kloosterman EH, Van Oosten H, Kumar L, Janssen JAM (2004) Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm Eng Remote Sens 70(6):703–715Google Scholar
  71. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968, 23rd ACM national conference, pp 517–524Google Scholar
  72. Skupin A, Fabrikant SI (2003) Spatialization methods: a cartographic research agenda for non-geographic information visualization. Cartogr Geogr Inf Sci 30(2):99–119.  https://doi.org/10.1559/152304003100011081 Google Scholar
  73. Smith C (1967) Plant remains. In: Byers D (ed) The prehistory of the Tehuacán Valley: environment and subsistence, vol 1, 1st ed. University of Texas Press, AustinGoogle Scholar
  74. Smith BD (2012) A cultural niche construction theory of initial domestication. Biol Theory 6(3):260–271.  https://doi.org/10.1007/s13752-012-0028-4 Google Scholar
  75. Stehman SV, Czaplewski RL (1998) Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sens Environ 64:331–344Google Scholar
  76. Steinkamp J, Hickler T (2015) Is drough-induced forest dieback globally increasing? J Ecol 103(1):31–43.  https://doi.org/10.1111/13652745.12335 Google Scholar
  77. Tellez-Valdez O, Davila P (2003) Protected areas and climate change: a case study od the cacti in the Tehuacan-Cuicatlan Biosphere Reserve, Mexico. Conserv Biol 17(3):846–853.  https://doi.org/10.1046/j.1523-1739.2003.01622.x Google Scholar
  78. Terrell JE, Hart JP, Barut S et al (2003) Domesticated landscapes: the subsistence ecology of plant and animal domestication. J Archaeol Method Theory 10(4):323–368.  https://doi.org/10.1023/B:JARM.0000005510.54214.57 Google Scholar
  79. Timbal B, Fernandez E, Li Z (2009) Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ Model Softw 24(3):341–358.  https://doi.org/10.1016/j.envsoft.2008.07.007 Google Scholar
  80. Torres I, Casas A, Delgado-Lemus A, Rangel-Landa S (2013) Aprovechamiento, demografía y establecimiento de Agave potatorum en el Valle de Tehuacán, México: Aportes ecológicos y etnobiológicos para su manejo sustentable. Zonas Áridas 15(1):92–109.  https://doi.org/10.21704/za.v15i1.110
  81. Ulloa CU, Acevedo-Rodríguez P, Beck S et al (2017) An integrated assessment of the vascular plant species of the Americas. Science 358(6370):1614–1617.  https://doi.org/10.1126/science.aao0398 Google Scholar
  82. Vaca RA, Golicher D, Cayuela L (2011) Using climatically based random forests to downscale coarse-grained potential natural vegetation maps in tropical Mexico. Appl Veg Sci 14(3):388–401.  https://doi.org/10.1111/j.1654-109X.2011.01132.x Google Scholar
  83. Valiente-Banuet A, Casas A, Dávila P et al (2000) Vegetación del Valle de Tehuacán-Cuicatlán. Boletín de la Sociedad Botánica de México 67:24–74Google Scholar
  84. Valiente-Banuet A, Solís L, Dávila P et al (2009) Guía de la vegetación del Valle de Tehuacán-Cuicatlán, 1st ed. Universidad Autónoma de México, México, DF.  https://doi.org/10.13140/2.1.3500.6247
  85. Vallejo M, Casas A, Pérez-Negrón E, Moreno-Calles AI et al (2015) Agroforestry systems of the lowland alluvial valleys of the Tehuacán-Cuicatlán Biosphere Reserve: an evaluation of their biocultural capacity. J Ethnobiol Ethnomed 11(1):8.  https://doi.org/10.1186/1746-4269-11-8 Google Scholar
  86. Vallejo M, Casas A, Moreno-Calles A, Blancas J (2016) Los sistemas agroforestales del Valle de Tehuacán: una perspectiva regional. In: Moreno-Calles AI, Casas A, Toledo VM, Vallejo M (eds) Etnoagroforestería en México, 1st ed. Universidad Nacional Autónoma de México, Michoacán, pp 193–217.  https://doi.org/10.17129/botsci.419
  87. Vasquez Y, Tarango L, López-Pérez E, Herrera J, Mendoza G, Mandujano S (2016) Variation in the diet composition of the white tailed deer (Odocoileus virginianus) in the Tehuacán-Cuicatlán Biosphere Reserve. Revista Chapingo. Serie Ciencias Forestales y del Ambiente.  https://doi.org/10.5154/r.rchscfa.2015.04.012
  88. Velázquez A, Medina C, Durán E, Amador A, Gopar-Merino F (2016) Standardized hierarchical vegetation classification. Mexican and global patterns. Springer, Switzerland.  https://doi.org/10.1007/978-3-319-41222-1
  89. Watson JE, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515(7525):67–73Google Scholar
  90. Web T (1986) Is vegetation in equilibrium with climate? How to interpret late-quaternary pollen data. Vegetation 67:715–791.  https://doi.org/10.1038/nature13947 Google Scholar
  91. Zavala F (1998) Observaciones sobre la distribución de encinos en México. Polibotánica 8:47–64Google Scholar
  92. Zonneveld IS (1988) Landscape (Ecosystem) and vegetation maps their relation and purpose. In: Küchler AW, Zonneveld IS (eds) Vegetation mapping. Handbook of vegetation science, vol 10. Kluwer Academic Publishers, AH Dordrecht, NL.  https://doi.org/10.1007/978-94-009-3083-4_39

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Investigaciones en Geografía Ambiental (CIGA)Universidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Escuela Nacional de Estudios Superiores (ENES)Universidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Instituto de Investigación en Ecosistemas y Sustentabilidad (IIES)Universidad Nacional Autónoma de MéxicoMoreliaMexico
  4. 4.Centro de Investigación en Biodiversidad y Conservación (CIByC)Universidad Autónoma del Estado de MorelosCuernavacaMexico
  5. 5.Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores, IztacalaTlalnepantlaMexico

Personalised recommendations