Redefining the Cerrado–Amazonia transition: implications for conservation

  • Eduardo Q. Marques
  • Ben Hur Marimon-JuniorEmail author
  • Beatriz S. Marimon
  • Eraldo A. T. Matricardi
  • Henrique A. Mews
  • Guarino R. Colli
Original Paper


Understanding the nature and extent of ecosystem boundaries has important implications for the management and conservation of biodiversity. However, characterizing and establishing such boundary limits has been a persistent challenge worldwide. The Cerrado–Amazonia transition (CAT) in Brazil is the world’s largest savanna-forest transition. However, the CAT is represented in official maps used by Brazilian governmental agencies as a simple line separating the two biomes. Here, we demonstrate that the CAT is in fact broad, complex and interdigitating and that its traditional linear representation is not adequate for recognizing and conserving biodiversity in this region. Over the 30 years of our analysis, the CAT suffered more deforestation than the forests and savannas in each individual biomes (Amazonia and Cerrado). The complexity of tropical savanna-forest boundaries has been misunderstood and misrepresented by current maps, severely threatening the complex CAT biota. As a consequence, vegetation losses have reached levels close to collapse in areas of intense human activity.


Ecotonal forests Official mapping Arc of deforestation Biodiversity losses Land use Deforestation Ecosystem boundaries 



We thank CAPES for the MSc scholarship to the first author and the National Council of Science and Technology of Brazil (CNPq) for the financial funding of the project PPBIO 457602/2012-0 (Rede Biota do Cerrado) and productivity grants to BH Marimon, BS Marimon and GR Colli. GRC thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), and the Partnerships for Enhanced Engagement in Research (PEER) program for financial support.

Supplementary material

10531_2019_1720_MOESM1_ESM.tif (774 kb)
Supplementary material 1 (TIFF 774 kb). Appendix Fig. A1 Filtered using a 5 km2 grid size for the reclassification and smoothing tools used as the base of the manually refined ecotone complex
10531_2019_1720_MOESM2_ESM.tif (801 kb)
Supplementary material 2 (TIFF 801 kb). Appendix Fig. A2 Result of the smoothing used as the base for the manually refined ecotone complex
10531_2019_1720_MOESM3_ESM.tif (6.4 mb)
Supplementary material 3 (TIFF 6593 kb). Appendix Fig. A3 Cerrado–Amazonia limit defined by considering the types of vegetation occurring in this region. The dividing line between biomes defined in this study (in blue) clearly does not match the line previously defined by the IBGE’s official mapping (in black)
10531_2019_1720_MOESM4_ESM.tif (1.7 mb)
Supplementary material 4 (TIFF 1748 kb). Appendix Fig. A4 Scheme showing events that may potentially lead to encroachment or retraction of forests or savannas, contributing to the floristic complexity of the Cerrado–Amazonia transition in Brazil
10531_2019_1720_MOESM5_ESM.tif (1.8 mb)
Supplementary material 5 (TIFF 1811 kb). Appendix Fig. A5 Land cover classes and protected areas. Indigenous Lands and Conservation Units, accounting for 16.7% of the landscape in the Cerrado–Amazonia transition in Brazil in 2014


  1. Ab’Sáber AN (1958) Conhecimento sobre as flutuações climáticas do quaternário no Brasil. Notícia Geomorfológica 01:24–30Google Scholar
  2. Ab’Saber AN (2002) Bases para o estudo dos ecossistemas da Amazônia brasileira. Estudos Avançados 16:7–30CrossRefGoogle Scholar
  3. Adams JB, Sabol DE, Kapos V, Almeida Filho R, Roberts DA, Smith MO, Gillespie AR (1995) Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens Environ 52:137–154CrossRefGoogle Scholar
  4. Alencar A, Nepstad D, Mcgrath D, Moutinho P, Pacheco P, Vera Diaz MDC, Soares-Filho B (2004) Desmatamento na Amazônia: indo além da ‘‘emergência crônica’’. IPAM, BelémGoogle Scholar
  5. Alvares CA, Stape JL, Sentelhas PC, Goncalves JLD, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  6. Behling H, Hooghiemstra H (2000) Holocene Amazon rainforest–savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. J Quat Sci 15:687–695CrossRefGoogle Scholar
  7. Brando PM, Coe MT, Defries R, Azevedo AA (2013) Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Phil Trans R Soc B 368:1–9CrossRefGoogle Scholar
  8. Brasil (1981) Ministério das Minas e Energia. Secretaria Geral. Projeto RADAMBRASIL. Folha SD.22 Goiás: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. Rio de Janeiro, v.25 636pGoogle Scholar
  9. Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275:54–60CrossRefGoogle Scholar
  10. Congalton RG (1997) Exploring and evaluating the consequences of vector-to-raster and raster-to-vector conversion. Photogramm Eng Remote Sens 63:425–434Google Scholar
  11. da Silva A, Mews H, Marimon-Junior BH, de Oliveira B, Morandi P, Oliveras I, Marimon BS (2018) Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environ Conserv 45(4):378–386CrossRefGoogle Scholar
  12. Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Sousa CM Jr, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328CrossRefPubMedGoogle Scholar
  13. de Oliveira B, Junior BH, Mews HA, Valadão MB, Marimon BS (2017) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218(2):225–239CrossRefGoogle Scholar
  14. Ducke A, Black GA (1953) Phytogeographical notes on the Brazilian Amazon. Academia Brazileira de CienciasGoogle Scholar
  15. EMBRAPA (2013) Código Florestal - adequação ambiental da paisagem rural: área de Reserva Legal. Available in: Accessed 14 Nov 2018
  16. ENVI (2004) ENVI Version 4.1 User’s Guide, Research Systems, IncGoogle Scholar
  17. ERDAS (2011) ERDAS Imagine Spectral Analysis Users Guide. ERDAS ImagineGoogle Scholar
  18. Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L et al (2018) Compositional response of Amazon forests to climate change. Glob Change Biol. Google Scholar
  19. ESRI (2011) Using ArcGIS Desktop: Realease 10. Instituto de Pesquisas Ambientais, RedlandsGoogle Scholar
  20. Fearnside PM (2005) Desmatamento na Amazônia brasileira: história, índices e conseqüências. Megadiversidade 1:113–123Google Scholar
  21. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733CrossRefGoogle Scholar
  22. Hoffmann WA, Jackson RB (2000) Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. J Clim 13:1593–1602CrossRefGoogle Scholar
  23. IBGE (2004) Instituto Brasileiro de Geografia e Estatística - Mapa de Biomas do Brasil: Primeira aproximação. Rio de Janeiro: IBGE. Escala 1:5.000.000. <>. Accessed 13 Oct 2014
  24. IBGE (2014) Instituto Brasileiro de Geografia e Estatística – Área territorial brasileira. Accessed 13 Oct 2014
  25. Ivanauskas NM, Monteiro R, Rodrigues RR (2008) Classificação fitogeográficas das florestas do Alto Rio Xingu. Acta Amazonica 38:387–402CrossRefGoogle Scholar
  26. Levis C, Costa FR, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Figueiredo FO, Salomão RP, Castilho CV (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355(6328):925–931CrossRefPubMedGoogle Scholar
  27. Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331:554CrossRefPubMedGoogle Scholar
  28. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:1–5CrossRefGoogle Scholar
  29. Marimon BS, Felfili JM, Haridasan M (2001) Studies in monodominant forests in eastern Mato Grosso, Brazil: I. A forest of Brosimum rubescens Taub. Edinb J Bot 58:123–137Google Scholar
  30. Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest ecotone. Edinb J Bot 63:323–341CrossRefGoogle Scholar
  31. Marimon BS, Marimon-Junior BH, Mews HA et al (2012) Floristics of floodplain ‘murundus’ of the Pantanal of Araguaia, Mato Grosso, Brazil. Acta Botanica Brasilica 26:181–196CrossRefGoogle Scholar
  32. Marimon BS, Marimon-Junior BH, Feldpausch TR, Santos CO, Mews HA, Lopez-Gonzalez G, Lloyd J, Franczak DD, Oliveira EA, Maracahipes L, Miguel A, Lenza E, Phillips OL (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol Divers 7:37–41CrossRefGoogle Scholar
  33. Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–992CrossRefGoogle Scholar
  34. Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski K, Fernandes LC (2010) Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens Environ 114:1117–1129CrossRefGoogle Scholar
  35. Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski K (2013) Assessment of forest disturbances by selective logging and forest fires in the Brazilian Amazon using Landsat data. Int J Remote Sens 34:1057–1086CrossRefGoogle Scholar
  36. Meneses PR, Almeida T (2012) Introdução ao Processamento de Imagens de Sensoriamento Remoto. UnB/CNPq, BrasíliaGoogle Scholar
  37. Metzger JP (2006) Como lidar com regras pouco óbvias para conservação da biodiversidade em paisagens fragmentadas. Natureza & Conservação 4:11–23Google Scholar
  38. Mews HA, Marimon BS, Ratter JA (2012) Observations on the vegetation of Mato Grosso, Brazil. V.* changes in the woody species diversity of a forest in the Cerrado-Amazonian Forest Transition zone and notes on the forests of the region. Edinb J Bot 69:239–253CrossRefGoogle Scholar
  39. Mittermeier RA, Myers N, Thomsen JB, Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520CrossRefGoogle Scholar
  40. Morandi PS, Marimon-Junior BH, Oliveira E, Reis S, Valadão MBX, Forsthofer M, Marimon BS (2016a) Vegetation Succesion in the Cerrado-Amazonian forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:83–93CrossRefGoogle Scholar
  41. Morandi PS, Marimon BS, Eisenlohr PV, Marimon-Junior BH, Oliveira-Santos C, Feldpausch TR, Oliveira EA, Reis SM, Lloyd J, Phillips OL (2016b) Patterns of tree species composition at watershed-scale in the Amazon ‘arc of deforestation’: implications for conservation. Environ Conserv 43(4):317–326CrossRefGoogle Scholar
  42. Morandi PS, Marimon BS, Marimon-Junior BH, Ratter JA, Feldpausch TR, Colli GR, Munhoz CB, Silva-Júnior MC, Souza-Lima E, Haidar RF, Arroyo L, Araujo-Murakami A, Góis FA, Walter BMT, Ribeiro JS, Françoso R, Elias F, Oliveira EA, Reis SM, Oliveira B, Neves EC, Nogueira DS, Lima HS, Carvalho TP, Rodrigues S, Villarroel D, Felfili JM, Phillips OL (2018) Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodivers Conserv. Google Scholar
  43. Nogueira EM, Fearnside PM, Nelson BW, França MB (2007) Wood density in forests of Brazil’s ‘arc of deforestation’: implications for biomass and flux of carbon from land-use change in Amazonia. For Ecol Manage 248:119–135CrossRefGoogle Scholar
  44. Nogueira EM, Nelson BW, Fearnside PM, França MB, Oliveira ACA (2008) Tree height in Brazil’s ‘arc of deforestation’: shorter trees in south and southwest Amazonia imply lower biomass. For Ecol Manage 255:2963–2972CrossRefGoogle Scholar
  45. Oliveira B, Marimon-Junior BH, Mews HA, Valadão MBX, Marimon BS (2017) Unraveling the ecosystem functions in the Amazonia-Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218:225–239CrossRefGoogle Scholar
  46. Overbeck GE, Vélez-Martin E, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460CrossRefGoogle Scholar
  47. Pacheco CSGR, Oliveira NMGA (2016) Conservação das espécies vegetais em paleoambientes dunares na APA Dunas e Veredas do Baixo-Médio São Francisco, Bahia, Brasil. Nat Resour 6:6–17Google Scholar
  48. Papp L (2012) Comentários ao Novo Código Florestal Brasileiro - Lei 12.651/12. 1a. Ed. Millennium, 352 pGoogle Scholar
  49. Passos FB, Marimon BS, Phillips OL, Morandi PS, Neves EC, Elias S, Reis SM, Oiveira B, Feldpausch TR, Marimon-Junior BH (2018) Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes. Braz J Bot 41:611–619CrossRefGoogle Scholar
  50. Peixoto KS, Marimon-Junior BH, Marimon BS, Elias F, de Farias J, Freitag R, Mews HA, das Neves EC, Prestes NC, Malhi Y (2017) Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradao forest undergoing ecological succession. Acta Oecologica 82:23–31CrossRefGoogle Scholar
  51. Peixoto KD, Marimon-Junior BH, Cavalheiro KA, Silva NA, das Neves EC, Freitag R, Mews HA, Valadão MB (2018) Assessing the effects of rainfall reduction on litterfall and the litter layer in phytophysiognomies of the Amazonia-Cerrado transition. Braz J Bot 41(3):589–600CrossRefGoogle Scholar
  52. Pessenda LC, Boulet R, Aravena R, Rosolen V, Gouveia SEM, Ribeiro AS, Lamotte M (2001) Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11:250–254CrossRefGoogle Scholar
  53. Pessenda LCR, Gouveia SEM, de Souza Ribeiro A, De Oliveira PE, Aravena R (2010) Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils. Palaeogeogr Palaeoclimatol Palaeoecol 297:597–608CrossRefGoogle Scholar
  54. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282(5388):439–442CrossRefPubMedGoogle Scholar
  55. Ratter JA (1993) Transition between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-Savanna Boundaries. Chapman & hall, London, pp 417–429Google Scholar
  56. Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of northeastern Mato Grosso – The wood vegetation types of the Xavantina – Cachimbo Expedition Area. Philos Trans R Soc 226:229–492Google Scholar
  57. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230CrossRefGoogle Scholar
  58. Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinb J Bot 60:57–109CrossRefGoogle Scholar
  59. Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: Ecologia e flora, 2nd edn. Embrapa–Cerrados, Brasilia, pp 151–212Google Scholar
  60. Ronnenberg KL (2013) How landscapes change: human disturbance and ecosystem fragmentation in the Americas. Springer, New YorkGoogle Scholar
  61. Silvério DV, Brando PM, Balch JK, Putz FE, Nepstad DC, Oliveira-Santos C, Bustamante MMC (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil Trans R Soc B 368:1–9CrossRefGoogle Scholar
  62. Soares LC (1953) Limites meridionais e orientais da área de ocorrência da Floresta amazônica em território Brasileiro. Rev bras Geografia 1:3–122Google Scholar
  63. Torello-Raventos M, Feldpausch TR, Veenendaal E, Schrodt F, Saiz G, Domingues TF, Marimon-Junior BH (2013) On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol Divers 6(1):101–137CrossRefGoogle Scholar
  64. Valadão MBX, Marimon JB, Oliveira BD, Lucio NW, Souza M, Marimon BS (2016) Biomass hyperdynamics as a key modulator of forest self-maintenance in a dystrophic soil in the Amazonia-Cerrado transition. Scientia Forestalis 44:475–485CrossRefGoogle Scholar
  65. Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Eduardo Q. Marques
    • 1
  • Ben Hur Marimon-Junior
    • 1
    Email author
  • Beatriz S. Marimon
    • 1
  • Eraldo A. T. Matricardi
    • 2
  • Henrique A. Mews
    • 3
  • Guarino R. Colli
    • 4
  1. 1.Programa de Pós-graduação em Ecologia e ConservaçãoUniversidade do Estado de Mato GrossoNova XavantinaBrazil
  2. 2.Departamento de Engenharia FlorestalUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Centro de Ciências Biológicas e da NaturezaUniversidade Federal do AcreRio BrancoBrazil
  4. 4.Departamento de ZoologiaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations