Advertisement

Spatial priorities for agricultural development in the Brazilian Cerrado: may economy and conservation coexist?

  • Larissa LemesEmail author
  • André Felipe Alves de Andrade
  • Rafael Loyola
Original Paper

Abstract

The ever-increasing requirement of land for food production causes habitat loss and biodiversity decline. Human activities like agriculture are responsible for increases in global temperature, which may preclude species’ survival if they cannot adapt to new climatic conditions or track suitable ones. Although negative impacts of climate change may act in synergy with agriculture when dispersion routes are blocked by croplands, agriculture is important to local economies. Therefore, the demand for land conversion causes conflict among stakeholders and decision makers. But can we benefit both economy and environment? Here we propose an approach to help find a balance between agriculture expansion and biodiversity conservation. We used suitable areas for agriculture to identify priority places to implement monocultures. We modeled species distributions to avoid sites with high conservation value and used species dispersal ability to minimize the distance between present-day and future suitable areas for species persistence. We used a decision-support tool to find a balance between economic development and species conservation, and we conclude that land use conversion is a threat for species persistence given that negative impacts caused by crops could be exacerbated by climate change. Unguided agriculture expansion into future species distribution areas is possible due to severe decreases in the areas for species to persist in the future. Facing this scenario, applying ecological knowledge to guide agriculture expansion is urgent if we want to spare species future distribution area in the Cerrado.

Keywords

Agriculture Brazil Conservation policy Mammals Spatial conservation planning Tropical savanna 

Notes

Acknowledgements

We thank two anonymous reviewers for comments and suggestion that improved the paper. RL research is funded by CNPq (Grant #306694/2018-2). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. This paper is a contribution of the INCT in Ecology, Evolution and Biodiversity Conservation founded by MCTIC/CNPq/FAPEG (Grant 465610/2014-5).

Supplementary material

10531_2019_1719_MOESM1_ESM.doc (344 kb)
Supplementary material 1 (DOC 344 kb)
10531_2019_1719_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 22 kb)
10531_2019_1719_MOESM3_ESM.doc (155 kb)
Supplementary material 3 (DOC 155 kb)

References

  1. Acevedo P, Jiménez-Valverde A, Lobo JM, Real R (2017) Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change. Clim Chang 145:131–143.  https://doi.org/10.1007/s10584-017-2082-1 CrossRefGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232.  https://doi.org/10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  3. Amatulli G, Domisch S, Tuanmu MN et al (2018) Data descriptor: a suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Nat Sci Data 5:1–15.  https://doi.org/10.1038/sdata.2018.40 CrossRefGoogle Scholar
  4. Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393.  https://doi.org/10.1111/j.1365-2699.2010.02290.x CrossRefGoogle Scholar
  5. Asner GP, Loarie SR, Heyder U (2010) Combined effects of climate and land-use change on the future of humid tropical forests. Conserv Lett 3:395–403.  https://doi.org/10.1111/j.1755-263X.2010.00133.x CrossRefGoogle Scholar
  6. Barve N, Barve V, Jiménez-Valverde A et al (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819.  https://doi.org/10.1016/j.ecolmodel.2011.02.011 CrossRefGoogle Scholar
  7. Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35:250–258.  https://doi.org/10.1111/j.1600-0587.2011.06545.x CrossRefGoogle Scholar
  8. Bell G, Gonzalez A (2009) Evolutionary rescue can prevent extinction following environmental change. Ecol Lett 12:942–948.  https://doi.org/10.1111/j.1461-0248.2009.01350.x CrossRefPubMedGoogle Scholar
  9. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377.  https://doi.org/10.1111/j.1461-0248.2011.01736.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bonvicino CR, Lima JFS, Almeida FC (2003) A new species of Calomys Waterhouse (Rodentia, Sigmodontinae) from the Cerrado of Central Brazil. Rev Bras Zool 20:301–307CrossRefGoogle Scholar
  11. Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055CrossRefGoogle Scholar
  12. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300.  https://doi.org/10.1016/S0304-3800(02)00200-4 CrossRefGoogle Scholar
  13. Brar B, Singh J, Singh G, Kaur G (2015) Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize-wheat rotation. Agronomy 5:220–238.  https://doi.org/10.3390/agronomy5020220 CrossRefGoogle Scholar
  14. Brasil (2018) Projeções do Agronegócio. Ministério da Agricultura, Pecuária e Abastecimento, BrasíliaGoogle Scholar
  15. Breiman L (2001) Random forest. Mach Learn 45:5–32Google Scholar
  16. Brown JL, Yoder AD (2015) Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecol Evol 5:1131–1142.  https://doi.org/10.1002/ece3.1418 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buainain AM, Garcia R (2015) Recent development patterns and challenges of Brazilian agriculture. In: Shome P, Sharma P (eds) Emerging economies: food and energy security, and technology and innovation. Springer, New Delhi, pp 41–66Google Scholar
  18. Buol SW (2009) Soils and agriculture in Central-West and North Brazil. Sci Agric 66:697–707CrossRefGoogle Scholar
  19. Charmantier A, McCleery RH, Cole LR et al (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803.  https://doi.org/10.1126/science.1157174 CrossRefPubMedGoogle Scholar
  20. Chen I-C, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026.  https://doi.org/10.1126/science.1206432 CrossRefPubMedGoogle Scholar
  21. Cortes C, Vapnik V (1995) Suppot-vector networks. Mach Learn 20:273–297.  https://doi.org/10.1023/A:1022627411411 Google Scholar
  22. Costa WJEM (2017) Three new species of the killifish genus Melanorivulus from the central Brazilian Cerrado savanna (Cyprinodontiformes, Aplocheilidae). Zookeys 2017:51–70.  https://doi.org/10.3897/zookeys.645.10920 CrossRefGoogle Scholar
  23. Devillers R, Pressey RL, Grech A et al (2015) Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquat Conserv Mar Freshw Ecosyst 25:480–504.  https://doi.org/10.1002/aqc.2445 CrossRefGoogle Scholar
  24. Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906.  https://doi.org/10.1111/j.1600-0587.2009.06196.x CrossRefGoogle Scholar
  25. Dobrovolski R, Diniz-Filho JAF, Loyola RD, Marco Júnior P (2011a) Agricultural expansion and the fate of global conservation priorities. Biodivers Conserv 20:2445–2459.  https://doi.org/10.1007/s10531-011-9997-z CrossRefGoogle Scholar
  26. Dobrovolski R, Loyola RD, De Marco Júnior P, Diniz-Filho JAF (2011b) Agricultural expansion can menace brazilian protected areas during the 21st century. Nat Conserv 9:208–213.  https://doi.org/10.4322/natcon.2011.027 CrossRefGoogle Scholar
  27. Dobrovolski R, Loyola R, Da Fonseca GAB et al (2014) Globalizing conservation efforts to save species and enhance food production. Bioscience 64:539–545.  https://doi.org/10.1093/biosci/biu064 CrossRefGoogle Scholar
  28. Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257.  https://doi.org/10.1016/j.biocon.2012.09.020 CrossRefGoogle Scholar
  29. FAO (2010) Global forest resources assessment 2010. In: Food and Agriculture Organization of the United Nations. pp 18–31Google Scholar
  30. Françoso RD, Brandão R, Nogueira CC et al (2015) Habitat loss and the effectiveness of protected areas in the Cerrado biodiversity hotspot. Nat Conserv 3:35–40CrossRefGoogle Scholar
  31. García-Valdés R, Svenning J-C, Zavala MA et al (2015) Evaluating the combined effects of climate and land-use change on tree species distributions. J Appl Ecol 52:902–912.  https://doi.org/10.1111/1365-2664.12453 CrossRefGoogle Scholar
  32. Giordano AJ (2016) Ecology and status of the jaguarundi Puma yagouaroundi: a synthesis of existing knowledge. Mamm Rev 46:30–43.  https://doi.org/10.1111/mam.12051 CrossRefGoogle Scholar
  33. Golding N (2014) GRaF: Species distribution modelling using latent Gaussian random fields. R Package version 0.1-12Google Scholar
  34. Golding N, Purse BV (2016) Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol Evol 7:598–608.  https://doi.org/10.1111/2041-210X.12523 CrossRefGoogle Scholar
  35. Gonçalvez PR, Almeida FC, Bonvicino CR (2003) A new species of Wiedomys (Rodentia: sigmodontinae) from Brazilian Cerrado. Mamm Biol 29:250–251.  https://doi.org/10.1097/WNO.0b013e3181b56a3d Google Scholar
  36. Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100.  https://doi.org/10.1016/S0304-3800(02)00204-1 CrossRefGoogle Scholar
  37. Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138CrossRefGoogle Scholar
  38. Hannah L, Roehrdanz PR, Ikegami M et al (2013) Climate change, wine, and conservation. Proc Natl Acad Sci USA 110:6907–6912.  https://doi.org/10.1073/pnas.1210127110 CrossRefPubMedGoogle Scholar
  39. Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–318.  https://doi.org/10.1214/ss/1177013604 CrossRefGoogle Scholar
  40. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  41. Hijmans RJ, Phillips S, Leathwick J, Maintainer JE (2017) Package “dismo” species distribution modeling. R Packag version 1.1-4.  https://doi.org/10.1002/abio.370020112
  42. Hirzel AH, Le Lay G, Helfer V et al (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152.  https://doi.org/10.1016/j.ecolmodel.2006.05.017 CrossRefGoogle Scholar
  43. Intergovernmental Panel on Climate Change (2000) Summary for policymakers. Emissions scenarios. IPCC, GenevaGoogle Scholar
  44. Iturbide M, Bedia J, Herrera S et al (2015) A framework for species distribution modelling with improved pseudo-absence generation. Ecol Model 312:166–174.  https://doi.org/10.1016/j.ecolmodel.2015.05.018 CrossRefGoogle Scholar
  45. Jackson HB, Fahrig L (2013) Habitat loss and fragmentation. Encycl Biodivers 4:50–58.  https://doi.org/10.1016/B978-0-12-384719-5.00399-3 CrossRefGoogle Scholar
  46. Jezkova T, Wiens JJ (2016) Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc R Soc B 283:1–9.  https://doi.org/10.1098/rspb.2016.2104 CrossRefGoogle Scholar
  47. Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890.  https://doi.org/10.1111/j.1472-4642.2008.00496.x CrossRefGoogle Scholar
  48. Jorge MSP (2005) Population density and home range size of red-rumped agoutis (Dasyprocta leporina). Within and outside a natural Brazil nut stand in Southeastern Amazonia. Biotropica 37:317–321CrossRefGoogle Scholar
  49. Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab: an S4 package for kernel methods in R. J Stat Softw 11:1–20.  https://doi.org/10.1016/j.csda.2009.09.023 CrossRefGoogle Scholar
  50. Kelt DA, Van Vuren DH (2001) The ecology and macroecology of mammalian home range area. Am Nat 157:637–645CrossRefPubMedGoogle Scholar
  51. Kennedy JD, Borregaard MK, Jønsson KA et al (2016) The influence of wing morphology upon the dispersal, geographical distributions and diversification of the corvides (Aves; passeriformes). Proc R Soc B 283:20161922.  https://doi.org/10.1098/rspb.2016.1922 CrossRefPubMedGoogle Scholar
  52. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713.  https://doi.org/10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
  53. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108:3465–3472.  https://doi.org/10.1073/pnas.1100480108 CrossRefPubMedGoogle Scholar
  54. Langham GM, Schuetz JG, Distler T et al (2015) Conservation status of North American birds in the face of future climate change. PLoS ONE 10:e0135350.  https://doi.org/10.1371/journal.pone.0135350 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lehtomäki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using Zonation. Environ Model Softw 47:128–137CrossRefGoogle Scholar
  56. Lemoine NP (2015) Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants. PLoS ONE 10:1–22.  https://doi.org/10.1371/journal.pone.0118614 CrossRefGoogle Scholar
  57. Leroy B, Delsol R, Hugueny B et al (2018) Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002.  https://doi.org/10.1111/jbi.13402 CrossRefGoogle Scholar
  58. Li F, Zhang S, Bu K et al (2015) The relationships between land use change and demographic dynamics in western Jilin province. J Geogr Sci 25:617–636.  https://doi.org/10.1007/s11442-015-1191-x CrossRefGoogle Scholar
  59. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22Google Scholar
  60. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789.  https://doi.org/10.1111/jbi.12058 CrossRefGoogle Scholar
  61. Lobo JM, Jiménez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114.  https://doi.org/10.1111/j.1600-0587.2009.06039.x CrossRefGoogle Scholar
  62. Loyola RD, Lemes P, Faleiro FV et al (2012) Severe loss of suitable climatic conditions for marsupial species in Brazil: challenges and opportunities for conservation. PLoS ONE 7:e46257.  https://doi.org/10.1371/journal.pone.0046257 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Maiorano L, Falcucci A, Zimmermann NE et al (2011) The future of terrestrial mammals in the Mediterranean basin under climate change. Philos Trans R Soc 366:2681–2692.  https://doi.org/10.1098/rstb.2011.0121 CrossRefGoogle Scholar
  64. Manna MC, Swarup A, Wanjari RH et al (2007) Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res 94:397–409.  https://doi.org/10.1016/j.still.2006.08.013 CrossRefGoogle Scholar
  65. Mantyka-pringle CS, Martin TG, Rhodes JR (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Chang Biol 18:1239–1252.  https://doi.org/10.1111/j.1365-2486.2011.02593.x CrossRefGoogle Scholar
  66. Mantyka-Pringle CS, Visconti P, Di Marco M et al (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Conserv 187:103–111.  https://doi.org/10.1016/j.biocon.2015.04.016 CrossRefGoogle Scholar
  67. Mcsorley R, Gallaher RN (1996) Effect of yard waste compost on nematode densities and maize yield. Suppl J Nematol 28:655–660Google Scholar
  68. Meng L, Ding W, Cai Z (2005) Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol Biochem 37:2037–2045.  https://doi.org/10.1016/j.soilbio.2005.03.007 CrossRefGoogle Scholar
  69. MMA (2015) Plano de Ação para Prevenção e Controle do Desmatamento e das Queimadas. BrasíliaGoogle Scholar
  70. Moilanen A, Pouzols FM, Meller L, et al (2014) Spatial conservation planning methods and software Zonation. Version 4 User manual. C-BIG Conservation Biology, HelsinkiGoogle Scholar
  71. Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for <scp> Maxent </scp> ecological niche models. Methods Ecol Evol 5:1198–1205.  https://doi.org/10.1111/2041-210X.12261 CrossRefGoogle Scholar
  72. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933.  https://doi.org/10.1641/0006-3568(2001)051%5b0933:TEOTWA%5d2.0.CO;2 CrossRefGoogle Scholar
  73. Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501.  https://doi.org/10.1126/science.1196624 CrossRefPubMedGoogle Scholar
  74. Phillips S (2017) maxnet: fitting “Maxent” species distribution models with “glmnet”Google Scholar
  75. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  76. Polasky S, Fackler P, Lonsdorf E et al (2008) Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol Conserv 141:1505–1524CrossRefGoogle Scholar
  77. R Core Development Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  78. Riahi K, Rao S, Krey V et al (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57.  https://doi.org/10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  79. Roberts DR, Bahn V, Ciuti S et al (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40:913–929.  https://doi.org/10.1111/ecog.02881 CrossRefGoogle Scholar
  80. Rodrigues MT, Pavan D, Curcio FF (2007) Two new species of Lizards of the genus Bachia (Squamata, Gymnophthalmidae) from Central Brazil. J Herpetol 41:545–553.  https://doi.org/10.1670/06-103.1 CrossRefGoogle Scholar
  81. Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3:545–554.  https://doi.org/10.1111/j.2041-210X.2011.00182.x CrossRefGoogle Scholar
  82. Sala OE, Iii FSC, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1775CrossRefPubMedGoogle Scholar
  83. Salvador MA, de Brito JIB (2018) Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil. Theor Appl Climatol 133:253–261.  https://doi.org/10.1007/s00704-017-2179-5 CrossRefGoogle Scholar
  84. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci USA 109:8596–8611.  https://doi.org/10.1073/pnas.1116791109 CrossRefGoogle Scholar
  85. Silva DP, Gonzalez VH, Melo GAR et al (2014) Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Model 273:200–209.  https://doi.org/10.1016/j.ecolmodel.2013.11.016 CrossRefGoogle Scholar
  86. Soares-Filho B, Rajâo R, Merry F et al (2016) Brazil’s market for trading forest certificates. PLoS ONE 11:1–17.  https://doi.org/10.1371/journal.pone.0152311 CrossRefGoogle Scholar
  87. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10.  https://doi.org/10.1093/wber/lhm022 CrossRefGoogle Scholar
  88. Srivastava JP, Alderman H (1993) Poverty and agricultural resource management. In: Agriculture and environmental challenges, pp 197–214Google Scholar
  89. Strassburg BBN, Brooks T, Feltran-Barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:1–3.  https://doi.org/10.1038/s41559-017-0099 CrossRefGoogle Scholar
  90. Teixeira MJ, Recoder RS, Camacho A et al (2013) A new species of Bachia Gray, 1845 (Squamata: gymnophthalmidae) from the Eastern Brazilian Cerrado, and data on its ecology, physiology and behavior. Zootaxa 3616:173–189CrossRefPubMedGoogle Scholar
  91. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822CrossRefPubMedGoogle Scholar
  92. Thomas CD, Williamson M (2012) Extinction and climate change. Nature 482:E4–E5.  https://doi.org/10.1038/nature10858 CrossRefPubMedGoogle Scholar
  93. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018) blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. bioRxiv.  https://doi.org/10.1101/357798 Google Scholar
  94. VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594.  https://doi.org/10.1016/j.ecolmodel.2008.11.010 CrossRefGoogle Scholar
  95. Vieira RRS, Ribeiro BR, Resende FM et al (2018) Compliance to Brazil’s Forest Code will not protect biodiversity and ecosystem services. Divers Distrib 24:434–438.  https://doi.org/10.1111/ddi.12700 CrossRefGoogle Scholar
  96. Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol 9:1–13.  https://doi.org/10.1186/1472-6785-9-8 CrossRefGoogle Scholar
  97. Zabel F, Putzenlechner B, Mauser W (2014) Global agricultural land resources: a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9:1–12.  https://doi.org/10.1371/journal.pone.0107522 CrossRefGoogle Scholar
  98. Zhu GP, Peterson AT (2017) Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol Invasions 19:2519–2532.  https://doi.org/10.1007/s10530-017-1460-y CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Larissa Lemes
    • 1
    • 4
    Email author
  • André Felipe Alves de Andrade
    • 1
  • Rafael Loyola
    • 2
    • 3
  1. 1.Programa de Pós-graduação em Ecologia e EvoluçãoUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Laboratório de Biogeografia da Conservação, Departamento de EcologiaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Fundação Brasileira para o Desenvolvimento SustentávelRio de JaneiroBrazil
  4. 4.Departamento de EcologiaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations