Advertisement

Biodiversity and Conservation

, Volume 28, Issue 5, pp 1205–1224 | Cite as

Effects of grazing on plant composition, conservation status and ecosystem services of Natura 2000 shrub-grassland habitat types

  • Vasco SilvaEmail author
  • Filipe X. Catry
  • Paulo M. Fernandes
  • Francisco C. Rego
  • Paula Paes
  • Leónia Nunes
  • Ana D. Caperta
  • Cecília Sérgio
  • Miguel N. Bugalho
Original Paper

Abstract

The Natura 2000 network is crucial to conserve biodiversity in the European Union and provides hotspots for certain ecosystem services. Grazing, a common land use in different Natura 2000 habitat types, may contribute to the maintenance of protected plant communities and reduce fuel loads and wildfire hazard. Our study aims to assess the effects of grazing on plant composition and conservation status of calcareous shrub-grassland Natura 2000 habitat types, as well as its effects on fire hazard reduction and aboveground carbon storage. We surveyed plant communities grazed by goats in fenced (ungrazed) and open (grazed) plots in a mosaic of calcareous shrub-grassland habitat types and assessed plant species composition and habitat conservation status. We also assessed aboveground plant biomass in grazed and ungrazed plots and modelled potential fire behaviour in those plots for each habitat. With the exception of cryptogams, grazing did not affect plant cover, but positively affected species richness (mean ± SD: 26.80 ± 11.65 vs. 29.37 ± 8.59, P = 0.01; fenced vs. unfenced) and Shannon diversity (2.11 ± 0.81 vs. 2.33 ± 0.55, P < 0.01) in the habitat mosaic. Furthermore, grazing did not affect the conservation status of two out of three of the studied habitat types. Additionally, grazing decreased the fire hazard in grass and dwarf shrub communities without reducing aboveground carbon stocks significantly. Our results show that moderate grazing is a management practice that effectively contribute to the conservation of Natura 2000 shrub-grassland habitat types through reduction of wildfire hazard and maintenance of habitat conservation status.

Keywords

Carbon storage Fire hazard Functional traits Indicator species Vegetation structure 

Notes

Acknowledgements

The first author acknowledges the FCT-Foundation for Science and Technology PhD Programme SUSFOR Grant (PD/BD/52696/2014) and the logistic support for fieldwork from Cooperativa Terra Chã, especially to António Frazão for allowing the opportunity to accompany the flock in the field and collect the data. We thank Elsa Gonçalves (University of Lisbon) for helping with statistical analysis, Palmira Carvalho (University of Lisbon) for identifying lichens species, Carlos Carmona Belo (National Institute for Agrarian and Veterinary Research) for useful discussions on stocking rate, Maria Conceição Colaço and Ana Águas (University of Lisbon) for help during field and laboratory work. ICNF kindly allowed use of the habitat cartography. Figure 4 use icons made by Freepik and nikita-golubev, from www.flaticon.com. This work is funded by FEDER funds through the Operational Programme for Competitiveness Factors—COMPETE and by National Funds through FCT under the UID/BIA/50027/2019 and POCI-01-0145-FEDER-006821. This research was also funded by the FCT Grant number UID/AGR/04033/2013 and POCI-01-0145-FEDER-006958 (CITAB-UTAD). FXC and ADC were supported by FCT Grants, SFRH/BPD/93373/2013 and LEAF-AGR/04129/BPD/2015, respectively, and MNB by Principal Investigator research contract IF01171/2014. We also thank three anonymous referees for their valuable comments, which significantly improved the clarity of the manuscript.

Supplementary material

10531_2019_1718_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2744 kb)

References

  1. ALFA (2004) Tipos de Habitat Naturais e Semi-Naturais do Anexo I da Directiva 92/43/CEE (Portugal continental): Fichas de Caracterização Ecológica e de Gestão para o Plano Sectorial da Rede Natura 2000. Associação Lusitana de Fitossociologia. http://www.icnf.pt/portal/naturaclas/rn2000/plan-set/hab-1a9. Accessed 14 December 2017
  2. Anderson WR, Cruz MG, Fernandes PM, McCaw L, Vega JA, Bradstock R, Fogarty L, Gould J, McCarthy G, Marsden-Smedley JB, Matthews S, Mattingley G, Pearce G, van Wilgen B (2015) A generic, empirical-based model for predicting rate of fire spread in shrublands. Int J Wildland Fire 24:443–460.  https://doi.org/10.1071/WF14130 CrossRefGoogle Scholar
  3. Andrews PL (2009) BehavePlus fire modeling system, version 5.0: variables. General technical report RMRS-GTR-213WWW revised. USDA Forest Service, Rocky Mountain Research Station, Fort Collins.  https://doi.org/10.2737/RMRS-GTR-213 CrossRefGoogle Scholar
  4. Andrews PL (2014) Current status and future needs of the BehavePlus fire modeling system. Int J Wildland Fire 23(1):21–33.  https://doi.org/10.1071/WF12167 CrossRefGoogle Scholar
  5. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156.  https://doi.org/10.1111/j.1461-0248.2006.00963.x CrossRefGoogle Scholar
  6. Bastian O (2013) The role of biodiversity in supporting ecosystem services in Natura 2000 sites. Ecol Indic 24:12–22.  https://doi.org/10.1016/j.ecolind.2012.05.016 CrossRefGoogle Scholar
  7. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  8. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  9. Botequim B, Zubizarreta-Gerendiain A, Garcia-Gonzalo J, Silva A, Marques S, Fernandes PM, Pereira JMC, Tomé M (2015) A model of shrub biomass accumulation as a tool to support management of Portuguese forests. iForest 8:114–125.  https://doi.org/10.3832/ifor0931-008 CrossRefGoogle Scholar
  10. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9(2):378–400CrossRefGoogle Scholar
  11. Bunce RGH, Bogers MMB, Evans D, Jongman RHG (2013) Field identification of habitats directive Annex I habitats as a major European biodiversity indicator. Ecol Indic 33:105–110.  https://doi.org/10.1016/j.ecolind.2012.10.004 CrossRefGoogle Scholar
  12. Burrascano S, Chytrý M, Kuemmerle T, Giarrizzo E, Luyssaert S, Sabatini FM, Blasi C (2016) Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biol Conserv 201:370–376.  https://doi.org/10.1016/j.biocon.2016.08.005 CrossRefGoogle Scholar
  13. Calaciura B, Spinelli O (2008) Management of Natura 2000 habitats. 6210 Semi-natural dry grasslands and shrubland facies on calcareous substrates (Festuco-Brometalia) (*importante orchid sites). European Commission, Brussels. http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/6210_Seminatural_dry_grasslands.pdf. Accessed 17 March 2017
  14. Canfield RH (1941) Application of the line interception method in sampling range vegetation. J. For 39:388–394.  https://doi.org/10.1093/jof/39.4.388 Google Scholar
  15. Cantarello E, Newton AC (2008) Identifying cost-effective indicators to assess the conservation status of forested habitats in Natura 2000 sites. For Ecol Manage 256:815–826.  https://doi.org/10.1016/j.foreco.2008.05.031 CrossRefGoogle Scholar
  16. Carli E, Giarrizzo E, Burrascano S, Alós M, Del Vico E, Di Marzio P, Facioni L, Giancola C, Mollo B, Paura B, Salerno G, Zavattero L, Blasi C (2018) Using vegetation dynamics to face the challenge of the conservation status assessment in semi-natural habitats. Rend Fis Acc Lincei 29(2):363–374.  https://doi.org/10.1007/s12210-018-0707-6 CrossRefGoogle Scholar
  17. Concostrina-Zubiri L, Molla I, Velizarova E, Branquinho C (2017) Grazing or not grazing: implications for ecosystem services provided by biocrusts in Mediterranean Cork Oak Woodlands. Land Degrad Dev 28:1345–1353.  https://doi.org/10.1002/ldr.2573 CrossRefGoogle Scholar
  18. Costa JC, Espírito-Santo MD, Arsénio P (2010) Guia geobotânico da excursão ao Parque Natural da Serras de Aire e Candeeiros. Quercetea 10:5–106. https://www.repository.utl.pt/handle/10400.5/5408
  19. Coutinho AXP (1939) Flora de Portugal, 2nd edn. Irmãos Bertrand, Lda., LisbonGoogle Scholar
  20. de Bello F, Lavorel S, Gerhold P, Reier U, Pärtel M (2010) A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol Conserv 143:9–17.  https://doi.org/10.1016/j.biocon.2009.04.022 CrossRefGoogle Scholar
  21. Del Vecchio S, Slaviero A, Fantinato E, Buffa G (2016) The use of plant community attributes to detect habitat quality in coastal environments. AoB Plants 8:plw040.  https://doi.org/10.1093/aobpla/plw040 CrossRefGoogle Scholar
  22. Dengler J (2009) A flexible multi-scale approach for standardised recording of plant species richness patterns. Ecol Indic 9(6):1169–1178.  https://doi.org/10.1016/j.ecolind.2009.02.002 CrossRefGoogle Scholar
  23. Dengler J, Chytry M, Ewald J (2008) Phytosociology. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 2767–2779CrossRefGoogle Scholar
  24. Devy-Vareta N (1986) Para uma geografia histórica da floresta portuguesa: do declínio das matas medievais à política florestal do Renascimento (séc. XV e XVI). Rev Fac Let Geogr 2:5–40. http://ler.letras.up.pt/uploads/ficheiros/artigo7161.pdf
  25. Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Chang Biol 13:313–341.  https://doi.org/10.1111/j.1365-2486.2006.01288.x CrossRefGoogle Scholar
  26. During HJ (1992) Ecological classifications of bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 1–31Google Scholar
  27. Egoh BN, Paracchini ML, Zulian G, Schägner JP, Bidoglio G (2014) Exploring restoration options for habitats, species and ecosystem services in the European Union. J Appl Ecol 51:899–908.  https://doi.org/10.1111/1365-2664.12251 CrossRefGoogle Scholar
  28. Espírito-Santo MD (1999) Habitats naturais e de espécies da flora do Maciço Calcário Estremenho. Quercetea 1:89–102Google Scholar
  29. Espírito-Santo MD, Rego FC, Costa JC (1993) Vegetation dynamics in the Serra dos Candeeiros (Central Portugal). In: Trabaud L, Prodon R (eds) Fire in Mediterranean Ecosystems, Pub. no. EUR 15089 EN. Commission of the European Communities, Brussels, pp 29–46Google Scholar
  30. Evans D (2006) The habitats of the European Union Habitats Directive. Biol Environ Proc R Ir Acad 106B(3):167–173CrossRefGoogle Scholar
  31. Evans D (2012) Building the European Union’s Natura 2000 network. Nat Conserv 1:11–26.  https://doi.org/10.3897/natureconservation.1.1808 CrossRefGoogle Scholar
  32. Evans D, Arvela M (2011) Assessment and reporting under article 17 of the Habitats Directive. Explanatory notes & guidelines for the period 2007–2012. European Topic Centre on Biological Diversity, Paris. https://circabc.europa.eu/sd/a/2c12cea2-f827-4bdb-bb56-3731c9fd8b40/Art17-Guidelines-final.pdf. Accessed 14 December 2017
  33. Fernandes PM (2001) Fire spread prediction in shrub fuels in Portugal. For Ecol Manage 144:67–74.  https://doi.org/10.1016/S0378-1127(00)00363-7 CrossRefGoogle Scholar
  34. Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66(4):415.  https://doi.org/10.1051/forest/2009013 CrossRefGoogle Scholar
  35. Fernandes P, Gonçalves H, Loureiro C, Fernandes M, Costa T, Cruz MG, Botelho H (2009) Modelos de combustível florestal para Portugal. Actas do 6° Congresso Florestal Nacional. SPCF, Lisbon, pp 348–354Google Scholar
  36. Grubb PJ (1976) A theoretical background to the conservation of ecologically distinct groups of annuals and biennials in the chalk grassland ecosystem. Biol Conserv 10:53–76.  https://doi.org/10.1016/0006-3207(76)90025-2 CrossRefGoogle Scholar
  37. Halada L, Evans D, Romão C, Petersen J-E (2011) Which habitats of European Importance depend on agricultural practices? Biodivers Conserv 20:2365–2378.  https://doi.org/10.1007/s10531-011-9989-z CrossRefGoogle Scholar
  38. Hill MO, Preston CD, Bosanquet SDS, Roy DB (2007) BRYOATT: attributes of British and Irish Mosses, Liverworts and Hornworts. NERC Centre for Ecology and Hydrology, Huntingdon. http://nora.nerc.ac.uk/id/eprint/1131/. Accessed 14 December 2017
  39. Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Chang Biol 11:945–958.  https://doi.org/10.1111/j.1365-2486.2005.00955.x CrossRefGoogle Scholar
  40. ICN (2007) Revisão do Plano de Ordenamento do Parque Natural das Serras de Aire e Candeeiros—Caracterização e Diagnóstico. Institute for Nature Conservation, Lisbon. http://www2.icnf.pt/portal/pn/biodiversidade/ordgest/poap/popnsac/resource/relatorios/relat-carat. Accessed 14 December 2017
  41. ICNF (2013) Relatório Nacional sobre a implementação da Directiva Habitats 2013. Institute for Nature Conservation and Forests, Lisbon. http://www2.icnf.pt/portal/pn/biodiversidade/rn2000/resource/doc/rel-nac-07-12/docs/nat-summ-pt. Accessed 14 December 2017
  42. Kovač M, Kutnar L, Hladnik D (2016) Assessing biodiversity and conservation status of the Natura 2000 forest habitat types: tools for designated forestlands stewardship. For Ecol Manage 359:256–267.  https://doi.org/10.1016/j.foreco.2015.10.011 CrossRefGoogle Scholar
  43. Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HY, Lei X, Schelhaas MJ, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309):8957.  https://doi.org/10.1126/science.aaf8957 CrossRefGoogle Scholar
  44. Llimona X, Hladun N (2001) Checklist of the Lichens and lichenicolous Fungi of the Iberian Peninsula and Balearic Islands. Bocconea 14:5–581. http://www.herbmedit.org/bocconea/14-005.pdf
  45. Lovreglio R, Meddour-Sahar O, Leone V (2014) Goat grazing as a wildfire prevention tool: a basic review. iForest 7:260–268.  https://doi.org/10.3832/ifor1112-007 CrossRefGoogle Scholar
  46. Lumbreras A, Marques JT, Belo AF, Cristo M, Fernandes M, Galioto D, Machado M, Mira A, Sá-Sousa P, Silva R, Sousa LG, Pinto-Cruz C (2016) Assessing the conservation status of Mediterranean temporary ponds using biodiversity: a new tool for practitioners. Hydrobiologia 782:187–199.  https://doi.org/10.1007/s10750-016-2697-7 CrossRefGoogle Scholar
  47. Maciejewski L, Lepareur F, Viry D, Bensettiti F, Puissauve R, Touroult J (2016) État de conservation des habitats: propositions de définitions et de concepts pour l’évaluation à l’échelle d’un site Natura 2000. Rev Ecol Terre Vie 71(1):3–20. http://documents.irevues.inist.fr/handle/2042/58186?show=full
  48. Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade JRM (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12.  https://doi.org/10.1016/j.biocon.2012.06.016 CrossRefGoogle Scholar
  49. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  50. Martins AF (1949) Maciço Calcário Estremenho, contribuição para um estudo de Geografia Física. Reprinted 1999, CoimbraGoogle Scholar
  51. McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Chang Biol 19:1347–1357.  https://doi.org/10.1111/gcb.12144 CrossRefGoogle Scholar
  52. MEA (2005) Ecosystems and human well-being: biodiversity synthesis. Millennium Ecosystem Assessment. World Resources Institute, Washington DC. https://www.millenniumassessment.org/documents/document.354.aspx.pdf
  53. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape—wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92:2389–2402.  https://doi.org/10.1016/j.jenvman.2011.06.028 CrossRefGoogle Scholar
  54. Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio 29:199–208.  https://doi.org/10.1007/BF02390011 CrossRefGoogle Scholar
  55. Norum RA (1982) Predicting wildfire behavior in black spruce forests in Alaska. Res. Note PNW-RN-401. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.  https://doi.org/10.2737/PNW-RN-401
  56. Noy-Meir I (1995) Interactive effects of fire and grazing on structure and diversity of Mediterranean grasslands. J Veg Sci 6:701–710.  https://doi.org/10.2307/3236441 CrossRefGoogle Scholar
  57. Noy-Meir I, Gutman M, Kaplan Y (1989) Responses of Mediterranean grassland plants to grazing and protection. J Ecol 77(1):290–310CrossRefGoogle Scholar
  58. Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59.  https://doi.org/10.1111/j.1365-2664.2006.01250.x CrossRefGoogle Scholar
  59. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package. R package version 2.4-2. https://CRAN.R-project.org/package=vegan
  60. Ostermann O (1998) The need for management of nature conservation sites designated under Natura 2000. J Appl Ecol 35:968–973.  https://doi.org/10.1111/j.1365-2664.1998.tb00016.x CrossRefGoogle Scholar
  61. Papanastasis VP, Bautista S, Chouvardas D, Mantzanas K, Papadimitriou M, Mayor AG, Koukioumi P, Papaioannou A, Vallejo RV (2017) Comparative assessment of goods and services provided by grazing regulation and reforestation in degraded Mediterranean rangelands. Land Degrad Dev 28(4):1178–1187.  https://doi.org/10.1002/ldr.2368 CrossRefGoogle Scholar
  62. Paula S, Arianoutsou M, Kazanis D, Tavsanoglu Ç, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, Pausas JG (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420.  https://doi.org/10.1890/08-1309.1 CrossRefGoogle Scholar
  63. Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin. Springer-Verlag, Berlin, Heidelberg, pp 3–16CrossRefGoogle Scholar
  64. Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire 17:713–723.  https://doi.org/10.1071/WF07151 CrossRefGoogle Scholar
  65. Perevolotsky A, Seligman NG (1998) Role of grazing in mediterranean rangeland ecosystems: inversion of a paradigm. Bioscience 48(12):1007–1017.  https://doi.org/10.2307/1313457 CrossRefGoogle Scholar
  66. Perevolotsky A, Landau S, Kababia D, Ungar ED (1998) Diet selection in dairy goats grazing woody Mediterranean rangeland. Appl Anim Behav Sci 57(1–2):117–131.  https://doi.org/10.1016/S0168-1591(97)00120-2 CrossRefGoogle Scholar
  67. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.  https://doi.org/10.1071/BT12225 CrossRefGoogle Scholar
  68. Porqueddu C, Ates S, Louhaichi M, Kyriazopoulos AP, Moreno G, del Pozo A, Ovalle C, Ewing MA, Nichols PGH (2016) Grasslands in ‘Old World’ and ‘New World’ Mediterranean-climate zones: past trends, current status and future research priorities. Grass Forage Sci 71:1–35.  https://doi.org/10.1111/gfs.12212 CrossRefGoogle Scholar
  69. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376.  https://doi.org/10.1016/S0006-3207(01)00201-4 CrossRefGoogle Scholar
  70. Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110(4):595–621.  https://doi.org/10.1639/0007-2745(2007)110%5b595:DIBAR%5d2.0.CO;2 CrossRefGoogle Scholar
  71. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  72. Ribeiro S, Fernandes JP, Espírito-Santo MD (2014) Diversity and floristic patterns of Mediterranean grasslands: the relative influence of environmental and land management factors. Biodivers Conserv 23:2903–2921.  https://doi.org/10.1007/s10531-014-0754-y CrossRefGoogle Scholar
  73. Rossa CG, Fernandes PM (2017) Fuel-related fire behaviour relationships for mixed live and dead fuels burned in the laboratory. Can J For Res 47(7):883–889.  https://doi.org/10.1139/cjfr-2016-0457 CrossRefGoogle Scholar
  74. Ruiz-Mirazo J, Robles AB, González-Rebollar JL (2011) Two-year evaluation of fuelbreaks grazed by livestock in the wildfire prevention program in Andalusia (Spain). Agric Ecosyst Environ 141(1–2):13–22.  https://doi.org/10.1016/j.agee.2011.02.002 CrossRefGoogle Scholar
  75. Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont BB, Pausas JG, Vargas P (2018) Fire and plant diversification in Mediterranean-climate regions. Front Plant Sci 9:851.  https://doi.org/10.3389/fpls.2018.00851 CrossRefGoogle Scholar
  76. Sequeira MM, Espírito-Santo D, Aguiar C, Capelo J, Honrado J (coords) (2012) Checklist da Flora de Portugal (Continental, Açores e Madeira). Associação Lusitana de Fitossociologia (ALFA). http://bibdigital.rjb.csic.es/PDF/Sequeira_y_al_Checklist_Flora_Portugal_2011.pdf. Accessed 14 December 2017
  77. Sérgio C, Carvalho S (2003) Annotated catalogue of portuguese bryophytes. Port Acta Biol 21:5–230Google Scholar
  78. Sérgio C, Sim-Sim M, Casas C, Brugués M, Cros RM (1988) A vegetação briológica das formações calcárias de Portugal-IV. O Maciço Calcário Estremenho. Serras de Aire. Candeeiros e Sicó. Mem Soc Broter 28:93–135Google Scholar
  79. Sérgio C, Sim-Sim M, Jansen J, Garcia C, Carvalho P (2003) Bryophyte diversity and impact of land-use in semi-natural grasslands in the Serra da Estrela (Portugal). Bocconea 16(2):1001–1019Google Scholar
  80. Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223–230.  https://doi.org/10.1016/j.ecolind.2015.06.036 CrossRefGoogle Scholar
  81. Sim-Sim M, Carvalho P, Sérgio C, Garcia C, Rego FC (2004) Recolonisation and changes in bryophyte and lichen biodiversity in burned areas from the Serra da Estrela (Portugal). Cryptogam Bryol 25(4):367–384Google Scholar
  82. Trancoso IM, Trancoso MA, Martins APL, Roseiro LB (2010) Chemical composition and mineral content of goat milk from four indigenous Portuguese breeds in relation to one foreign breed. Int J Dairy Technol 63(4):516–522.  https://doi.org/10.1111/j.1471-0307.2010.00625.x CrossRefGoogle Scholar
  83. Tsiouvaras CN, Havlik NA, Bartolome JW (1989) Effects of goats on understory vegetation and fire hazard reduction in a coastal forest in California. For Sci 35(4):1125–1131.  https://doi.org/10.1093/forestscience/35.4.1125 Google Scholar
  84. Tsiripidis I, Xystrakis F, Kallimanis A, Panitsa M, Dimopoulos P (2018) A bottom–up approach for the conservation status assessment of structure and functions of habitat types. Rend Fis Acc Lincei 29(2):267–282.  https://doi.org/10.1007/s12210-018-0691-x CrossRefGoogle Scholar
  85. Valente MJ, Carvalho AF (2014) Zooarchaeology in the Neolithic and Chalcolithic of Southern Portugal. Environ Archaeol 19(3):226–240.  https://doi.org/10.1179/1749631414Y.0000000022 CrossRefGoogle Scholar
  86. van der Maarel E (1979) Transformation of cover–abundance values in phytosociology and its effects on community similarity. Vegetatio 38:97–114.  https://doi.org/10.1007/BF00052021 Google Scholar
  87. van Wilgen BW, Richardson DM (1985) The effects of alien shrub invasions on vegetation structure and fire behaviour in South African fynbos shrublands: a simulation study. J Appl Ecol 22:955–966CrossRefGoogle Scholar
  88. Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically-based indices. Int J Wildland Fire 10:223–240.  https://doi.org/10.1071/WF01022 CrossRefGoogle Scholar
  89. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273.  https://doi.org/10.1016/S0006-3207(01)00191-4 CrossRefGoogle Scholar
  90. Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ (2007) Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10:1069–1083.  https://doi.org/10.1007/s10021-007-9080-5 CrossRefGoogle Scholar
  91. Ziv G, Hassall C, Bartkowski B, Cord AF, Kaim A, Kalamandeen M, Landaverde-Gonzalez P, Melo JLB, Seppelt R, Shannon C, Vaclavik T, Zoderer BM, Beckmann M (2017) A bird’s eye view over ecosystem services in Natura 2000 sites across Europe. Ecosyst Serv 30:287–298.  https://doi.org/10.1016/j.ecoser.2017.08.011 CrossRefGoogle Scholar
  92. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer-Verlag, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Vasco Silva
    • 1
    Email author
  • Filipe X. Catry
    • 1
  • Paulo M. Fernandes
    • 1
    • 2
  • Francisco C. Rego
    • 1
  • Paula Paes
    • 3
  • Leónia Nunes
    • 1
    • 2
  • Ana D. Caperta
    • 3
  • Cecília Sérgio
    • 4
  • Miguel N. Bugalho
    • 1
  1. 1.Centre for Applied Ecology “Professor Baeta Neves”, CEABN/InBIO, School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.Centre of the Research and Technology of Agro-Environmental and Biological Science, CITABUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Linking Landscape, Environment, Agriculture and Food, LEAF, School of AgricultureUniversity of LisbonLisbonPortugal
  4. 4.Centre for Ecology, Evolution and Environmental Changes, CE3C, National Museum of Natural History and ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations