Biodiversity and Conservation

, Volume 28, Issue 5, pp 1151–1172 | Cite as

Distributional shifts of canopy-forming seaweeds from the Atlantic coast of Southern Europe

  • P. Casado-AmezúaEmail author
  • R. Araújo
  • I. Bárbara
  • R. Bermejo
  • Á. Borja
  • I. Díez
  • C. Fernández
  • J. M. Gorostiaga
  • X. Guinda
  • I. Hernández
  • J. A. Juanes
  • V. Peña
  • C. Peteiro
  • A. Puente
  • I. Quintana
  • F. Tuya
  • R. M. Viejo
  • M. Altamirano
  • T. Gallardo
  • B. MartínezEmail author
Original Paper
Part of the following topical collections:
  1. Coastal and marine biodiversity


Canopy-forming seaweeds sustain critical ecosystem services in coastal habitats. Around the world, many of these seaweeds are suffering strong declines, mainly attributed to the progressive increase in sea surface temperature, in combination with other stressors due to current global changes. The southernmost part of the NE Atlantic is among those areas most affected by climate change. In this study, we estimated the distributional contractions of seven of the most conspicuous seaweeds from the Atlantic coasts of the Iberian Peninsula using an “Extent of Occurrence” methodology. Overall, during the last three decades, range shifts have been more pronounced east of the Cantabrian Sea than along the western coast of the Iberian Peninsula. In particular, regions with a semi-permanent summer upwelling seem to be critical to the persistence of brown seaweeds, fucoids and kelps. Range contractions of the cold-temperate fucoids were estimated to be ca. 21% and 45% for Himanthalia elongata and Fucus serratus, respectively; and for the kelps Saccharina latissima and Laminaria hyperborea, 6% and 14%, respectively. Range contractions for warm-temperate kelps were estimated to be ca. 13% and 10% for Saccorhiza polyschides and L. ochroleuca, respectively. Finally, a decline in the warm-temperate red algae Gelidium corneum occurred only in the easternmost area of the Cantabrian Sea (Basque Country), leading to a distributional contraction of 7%. We recommend conservation actions to better manage the remnant populations of these canopy-forming seaweeds, and their inclusion in national and regional catalogues of endangered species and on international Red Lists.


Kelp forests Fucoids Red algae Climate change Range contraction Community replacement 



The authors would like to acknowledge I. López and C. Numa for their suggestions on the project and manuscript development. We thank L. Duarte, M. García-Tasende, R. Haroun, R. Herrera, I. Muxika, C. Sangil, and M. Sansón, for their suggestions along the project development. S. Rodríguez, A. García, L. Rodríguez and HyT Association for their technical and logistical support. S. Young for English revision of grammar and style. We thank one anonymous reviewer and the editors that have contributed to largely improve the first version of the manuscript. This study was partially funded by the Spanish Ministry of Agriculture and Fisheries, Food and Environment. V. Peña acknowledges support from the postdoctoral program Campus Industrial de Ferrol (Universidade da Coruña). R. Araújo contribution to this work was carried out in the context of the JRC Biomass assessment study (


  1. Airoldi L, Balata D, Beck MW (2008) The gray zone: relationships between habitat loss and marine diversity and their applications in conservation. J Exp Mar Biol Ecol 366:8–15Google Scholar
  2. Anadón R (1983) Zonación en la costa asturiana: variación longitudinal de las comunidades de macrófitos en diferentes niveles de marea. Invest Pesq 47:125–141Google Scholar
  3. Anadón R, Niell FX (1981) Distribución longitudinal de macrófitos en la costa asturiana (N de España). Invest Pesq 45:143–156Google Scholar
  4. Anadón R, Fernández C, García Flórez L, Losada I, Valdés L (2009) Costas y océanos. In: Anadón Álvarez R, Roqueñí Gutiérrez N (eds) Evidencias y efectos potenciales del cambio climático en Asturias. Consejería de Medio Ambiente, Ordenación del Territorio e Infraestructuras, Gobierno del Principado de Asturias, Oviedo, pp 126–170Google Scholar
  5. Araújo R, Bárbara I, Tibaldo M, Berecibar E, Tapia PD, Pereira R et al (2009) Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot Mar 52:24–46Google Scholar
  6. Araújo RM, Assis J, Aguillar R, Airoldi L, Bárbara I et al (2016) Status, trends and drivers of kelp forests in Europe: an expert assessment. Bio Conserv 25:1319–1348Google Scholar
  7. Ardré F (1971) Contribution a l’étude des algues marines du Portugal. II. Ecologie et chorologie. Bull Cent Etud Rech Sci Biarritz 8:359–574Google Scholar
  8. Arrontes J (1993) Nature of the distributional boundary of Fucus serratus on the North shore of Spain. Mar Ecol Prog Ser 93:183–193Google Scholar
  9. Arrontes J (2002) Mechanisms of range expansion in the intertidal brown alga Fucus serratus in Northern Spain. Mar Biol 141:1059–1067Google Scholar
  10. Arroyo NL, Maldonado M, Walters K (2006) Within- and between-plant distribution of harpacticoid copepods in a North Atlantic bed of Laminaria ochroleuca. J Mar Biol Assoc UK 86:309–316Google Scholar
  11. Assis J, Tavares D, Tavares J, Cunha A, Alberto F, Serrão EA (2009) Findkelp, a GIS-based community participation project to assess Portuguese kelp conservation status. J Coast Res 56:1469–1473Google Scholar
  12. Assis J, Vaz Lucas A, Bárbara I, Alvares Serrão E (2016) Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Mar Environ Res 113:174–182Google Scholar
  13. Assis J, Berecibar E, Claro B, Alberto F, Reed D, Raimondi P, Serrão EA (2017a) Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Sci Rep 7:44348Google Scholar
  14. Assis J, Araujo MB, Serrao E (2017b) Projected climate change threaten refugia of kelp forests in the North Atlantic. Glob Chang Biol 24:e55–e66Google Scholar
  15. Bárbara I, Cremades J, Calvo S, López-Rodríguez MC, Dosil J (2005) Checklist of the benthic marine and brackish Galician algae (NW Spain). An Jard Bot Madrid 62:69–100Google Scholar
  16. Bárbara I, Lee SY, Peña V, Díaz P, Cremades J, Oak JH, Choi HG (2008) Chrysymenia wrightii (Rhodymeniales, Rhodophyta) a new non-native species for the European Atlantic Coast. Aquat Invasions 3:367–375Google Scholar
  17. Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213Google Scholar
  18. Bennett S, Wernberg T, Connell S, Hobday A, Johnson C, Poloczanska E (2016) The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47–56Google Scholar
  19. Bermejo R, Vergara JJ, Hernández I (2012) Application and reassessment of the reduced species list index for macroalgae to assess the ecological status under the Water Framework Directive in the Atlantic coast of Southern Spain. Ecol Indic 12:46–57Google Scholar
  20. Bermejo R, Ramirez-Romero E, Vergara JJ, Hernández I (2015) Spatial patterns of macrophyte composition and landscape along the rocky shores of the Mediterranean-Atlantic transition region (northern Alboran Sea). Estuar Coast Shelf Sci 155:17–28Google Scholar
  21. Bode (2008) Twenty one new records of fish species with tropical affinity in Galicia since 1996. Xornada sobre a Enerxía que ven do mar, CEIDA, A Coruña. Universidade da Coruña, SpainGoogle Scholar
  22. Borja A, Gorostiaga JM (1990) Distribución geográfica de Saccorhiza polyschides (Light.) Batt. en la costa vasca. Su posible relación con la temperatura. Simp Ibér Estuar Bentos Mar 6:1–8Google Scholar
  23. Borja A, Aguirrezabalaga F, Martínez J, Sola JC, García-Arberas L, Gorostiaga JM (2004) Benthic communities, biogeography and resources management. In: Borja A, Collins M (eds) Oceanography and marine environment of the Basque Country. Elsevier, Amsterdam, pp 455–492Google Scholar
  24. Borja Á, Fontán A, Muxika I (2013) Interactions between climatic variables and human pressures upon a macroalgae population: implications for management. Ocean Coast Manag 76:85–95Google Scholar
  25. Borja Á, Chust G, Fontán A, Garmendia JM, Uyarra MC (2018) Long-term decline of the canopy-forming algae Gelidium corneum, associated to extreme wave events and reduced sunlight hours, in the southeastern Bay of Biscay. Estuar Coast Shelf Sci 250:152–160Google Scholar
  26. Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresun 42:199Google Scholar
  27. Brodie J, Williamson CJ, Smale DA, Kamenos NA, Mieszkowska N, Santos R et al (2014) The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol 4:2787–2798Google Scholar
  28. Bustamante M, Tajadura J, Díez I, Saiz-Salinas JI (2017) The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties. J Sea Res 130:123–133Google Scholar
  29. Byrnes JE, Reed DC, Cardinale BJ, Cavanaugh KC, Holbrook SJ, Schmitt RJ (2011) Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Chang Biol 17:2513–2524Google Scholar
  30. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253Google Scholar
  31. Commission Decision (EU) (2017) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EUGoogle Scholar
  32. Costoya X, Gómez-Gesteira M, Santos F (2015) Changes in sea surface temperature seasonality in the Bay of Biscay over the last decades (1982–2014). J Mar Syst 150:91–101Google Scholar
  33. Crowe TP, Cusson M, Bulleri F, Davoult D, Arenas F, Aspden R et al (2013) Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE 8:e66238Google Scholar
  34. Davidson AD, Campbell ML, Hewitt CL, Schaffelke B (2015) Assessing the impacts of nonindigenous marine macroalgae: an update of current knowledge. Bot Mar 58:55–79Google Scholar
  35. Díez I, Muguerza N, Santolaria A, Ganzedo U, Gorostiaga JM (2012) Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar Coast Shelf Sci 99:108–120Google Scholar
  36. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive)Google Scholar
  37. Duarte CM (2016) Reviews and syntheses: hidden forests, the role of vegetated coastal habitats on the ocean carbon budget. Biogeosci Discuss 2016:1–17Google Scholar
  38. Duarte L, Viejo RM, Martínez B, de Castro M, Gómez-Gesteira M, Gallardo T (2013) Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecol 51:1–10Google Scholar
  39. Duarte L, Rossi F, Docal C, Viejo RM (2015) Effects of alga Fucus serratus decline on benthic assemblages and trophic linkages at its retreating southern range edge. Mar Ecol Prog Ser 527:87–103Google Scholar
  40. Fernández C (2011) The retreat of large brown seaweeds on the north coast of Spain: the case of Saccorhiza polyschides. Eur J Phycol 46:352–360Google Scholar
  41. Fernández C (2016) Current status and multidecadal biogeographical changes in rocky intertidal algal assemblages: the northern Spanish coast. Estuar Coast Shelf Sci 171:35–40Google Scholar
  42. Fernández C, Anadón R (2008) La cornisa cantábrica: un escenario de cambios de distribuciónń de comunidades intermareales. Algas 39:30–31Google Scholar
  43. Fernánez C, Niell FX (1981) Discusión sobre los métodos usados en la estimación de la producción en macrófitos intermareales. Oecol Aquat 5:43–52Google Scholar
  44. Filbee-Dexter K, Feehan CJ, Scheibling RE (2016) Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar Ecol Prog Ser 543:141–152Google Scholar
  45. Fischer-Piette E (1955a) Sur les déplacements des frontières biogéographiques intercotidales, observables en Espagne. C R séances de l’ Académie des Sciences 241:447–449Google Scholar
  46. Fischer-Piette E (1955b) Répartition, le long des cotes septentrionales de L’ Espagne, des principales espèces peuplant les rochers intercotidaux. Ann Inst Océan 31:37e124Google Scholar
  47. Fischer-Piette E, Ginsburg-Ardré F (1963) Le difficile repeuplement en Himanthalia de la côte de Santander. Rev Algol N Sér 6:324–329Google Scholar
  48. Flukes EB, Wright JT, Johnson CR (2015) Phenotypic plasticity and biogeographic variation in physiology of habitat-forming seaweed: response to temperature and nitrate. J Phycol 51:896–909Google Scholar
  49. Fram JP, Stewart HL, Brzezinski MA, Gaylord B, Reed DC, Williams SL, MacIntyre S (2008) Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnol Oceanogr 53:1589–1603Google Scholar
  50. Franco JN, Wernberg T, Bertocci I, Jacinto D, Maranhão P, Pereira T et al (2017) Modulation of different kelp life stages by herbivory: compensatory growth versus population decimation. Mar Biol 164:164Google Scholar
  51. Franco JN, Tuya F, Bertocci I, Rodríguez L, Martínez B, Sousa-Pinto I, Arenas F (2018) The ‘golden kelp’ Laminaria ochroleuca under global change: integrating multiple eco-physiological responses with species distribution models. J Ecol 106:47–58Google Scholar
  52. Fusi M, Giomi F, Babbini S, Daffonchio D, McQuaid CD, Porri F, Cannicci S (2015) Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 124:784–795Google Scholar
  53. Gallardo T, Bárbara I, Alfonso-Carrillo J, Bermejo R, Altamirano M, Gómez-Garreta A et al (2016) Nueva lista crítica de las algas bentónicas marinas de España. Algas 51:1–48Google Scholar
  54. García-Tasende M, Peteiro C (2015) Explotación de las macroalgas marinas: galicia como caso de estudio hacia una gestión sostenible de los recursos. Ambienta 111:116–132Google Scholar
  55. Gili C, Anadón R, Carbonell J, Olivella I, Ros J (1979) Comunidades bentónicas submarinas del litoral de Lugo. I. Resultados preliminares. Simp Ibér Bentos Mar 1:711–750Google Scholar
  56. Goela PC, Cordeiro C, Danchenko S, Icely J, Cristina S, Newton A (2016) Time series analysis of data for sea surface temperature and upwelling components from the southwest coast of Portugal. J Mar Syst 163:12–22Google Scholar
  57. Goikoetxea N, Borja Á, Fontán A, González M, Valencia V (2009) Trends and anomalies in sea-surface temperature, observed over the last 60 years, within the southeastern Bay of Biscay. Cont Shelf Res 29:1060–1069Google Scholar
  58. Gómez-Gesteira M, de Castro M, Álvarez I, Gómez-Gesteira JL (2008) Coastal sea surface temperature warming trend along the continental part of the Atlantic Arc (1985–2005). J Geophys Res 113:C04010Google Scholar
  59. Gómez-Gesteira M, Gimeno L, deCastro M, Lorenzo MN, Alvarez I, Nieto R et al (2011) The state of climate in NW Iberia. Clim Res 48:109–144Google Scholar
  60. Gorostiaga JM, Santolaria A, Secilla A, Diez I (1998) Sublittoral benthic vegetation of the eastern Basque coast (N. Spain): structure and environmental factors. Bot Mar 41:455–466Google Scholar
  61. Gorostiaga JM, Santolaria A, Secilla A, Casares C, Díez I (2004) Check-list of the Basque coast benthic algae (North of Spain). An Jard Bot Madrid 61:155–180Google Scholar
  62. Graham MH (2004) Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7:341–357Google Scholar
  63. Guinda X, Juanes AJ, Puente A, Echavarri-Erasun B (2012) Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method. J Sea Res 67:34–43Google Scholar
  64. Hawkins SJ, Sugden HE, Mieszkowska N, Moore PJ, Poloczanska E, Leaper R et al (2009) Consequences of climate-driven biodiversity changes for ecosystem functioning of north European rocky shores. Mar Ecol Prog Ser 396:245–259Google Scholar
  65. Helmuth B (2002) How do we measure the environment? Linking intertidal thermal physiology and ecology through biophysics. Int Comp Biol 42:837–845Google Scholar
  66. Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL (2007) Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol Ecol 16:3606–3616Google Scholar
  67. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528Google Scholar
  68. IUCN (2013) Guidelines for using the IUCN red list categories and criteria: Version 10. IUCN Species Survival Commission, IUCN (International Union for Conservation of Nature), Gland, Switzerland and Cambridge, UKGoogle Scholar
  69. Izquierdo J, Pérez-Ruzafa IM, Gallardo T (2002) Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgol Mar Res 55:285–292Google Scholar
  70. Jones DOB, Yool A, Wei C-L, Henson SA, Ruhl HA, Watson RA, Gehlen M (2014) Global reductions in seafloor biomass in response to climate change. Glob Chang Biol 20:1861–1872Google Scholar
  71. Jorgenson AK, Clark B (2011) Societies consuming nature: a panel study of the ecological footprints of nations, 1960–2003. Soc Sci Res 40:226–244Google Scholar
  72. Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9:737–742Google Scholar
  73. Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton J, Cavanaugh KC et al (2016) Global patterns of kelp forest change over the past half-century. Proc Nat Acad Sci 113:13785–13790Google Scholar
  74. Laffoley D, Baxter JM (2016) Explaining ocean warming: causes, scale, effects and consequences. Full report published by International Union for Conservation of Nature and Natural Resources (IUCN), Gland, SwitzerlandGoogle Scholar
  75. Lamela-Silvarrey C, Fernández C, Anadón R, Arrontes J (2012) Fucoid assemblages on the north coast of Spain: past and present (1977–2007). Bot Mar 55:199–207Google Scholar
  76. Lemos RT, Pires HO (2004) The upwelling regime off the West Portuguese Coast, 1941–2000. Int J Climatol 24:511–524Google Scholar
  77. Lima FP, Wethey DS (2012) Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun 3:704Google Scholar
  78. Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos A (2007) Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Chang Biol 13:2592–2604Google Scholar
  79. Lourenço CR, Zardi GI, McQuaid ChD, Serrao E, Pearson G, Jacinto R, Nicastro KR (2016) Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J Biogeogr 43:1595–1607Google Scholar
  80. Lüning K (1990) Seaweeds: their environment, biogeography and ecophysiology. Wiley, New YorkGoogle Scholar
  81. Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122Google Scholar
  82. Marqués V, Reis C, Calvario J, Marqués JC, Melo R, Santos R (1982) Contribuição para o estudo dos povoamentos bentónicos (substrato rochoso) da costa ocidental Portuguesa. Zona intertidal. Oecol Aquat 6:119–145Google Scholar
  83. Martínez B, Arenas F, Rubal M, Burgués S, Esteban R et al (2012) Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia 170:341–353Google Scholar
  84. Martínez B, Arenas F, Trilla A, Viejo RM, Carreno F (2015a) Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Glob Chang Biol 21:1422–1433Google Scholar
  85. Martínez B, Afonso-Carrillo J, Anadón R, Araújo R, Arenas F, Arrontes J et al (2015b) Regresión de las algas marinas en la costa atlántica de la Península Ibérica y en las Islas Canarias por efecto del cambio climático. Algas 49:5–12Google Scholar
  86. Mcneill SE (1992) Criterios para el establecimiento de zonas protegidas en la costa asturiana. Universidad de Oviedo, SpainGoogle Scholar
  87. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  88. Mineur F, Arenas F, Assis J, Davies AJ, Engelen AH et al (2015) European seaweeds under pressure: consequences for communities and ecosystem functioning. J Sea Res 98:91–108Google Scholar
  89. Muguerza N, Díez I, Quintano E, Bustamante M, Gorostiaga JM (2017) Structural impoverishment of the subtidal vegetation of southeastern Bay of Biscay from 1991 to 2013 in the context of climate change. J Sea Res 130:166–179Google Scholar
  90. Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285Google Scholar
  91. Norderhaug KM, Gundersen H, Pedersen A, Moy F, Green N, Walday M et al (2015) Combined effects from climate variation and eutrophication on the diversity in hard bottom communities on the Skagerrak coast 1990–2010. Mar Ecol Prog Ser 530:29–46Google Scholar
  92. OSPAR Commission (2010) Quality status report 2010. OSPAR Commission, London, p 176Google Scholar
  93. Palumbi SR, Sandifer PA, Allan JD, Beck MW, Fautin DG, Fogarty MJ, Stachowicz JJ (2009) Managing for ocean biodiversity to sustain marine ecosystem services. Front Ecol Environ 7:204–211Google Scholar
  94. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958Google Scholar
  95. Pérez Llorens JL, Hernández Carrero I, Bermejo Lacida R, Peralta González G, Brun Murillo FG, Vergara Oñate J (2012) Flora marina del litoral gaditano. Biología, ecología, usos y guía de identificación. Monografías. Ciencias de la Naturaleza. Universidad de CádizGoogle Scholar
  96. Piñeiro-Corbeira C, Barreiro R, Cremades J (2016) Decadal changes in the distribution of common intertidal seaweeds in Galicia (NW Iberia). Mar Environ Res 113:106–115Google Scholar
  97. Pinho D, Bertocci I, Arenas F, Franco JN, Jacinto D et al (2016) Spatial and temporal variation of kelp forests and associated macroalgal assemblages along the Portuguese coast. Mar Freshw Res 67:113–122Google Scholar
  98. Polidoro BA, Carpenter KE, Dahdouh-Guebas FARID, Ellison JC, Koedam NE, Yong JW (2014) Global patterns of mangrove extinction risk: implications for ecosystem services and biodiversity loss. Coast Conserv 19:15Google Scholar
  99. Populus J, Vasquez M, Albrecht J, Manca E, Agnesi S, Al Hamdani Z et al (2017) EUSeaMap. A European broad-scale seabed habitat map. 174.
  100. Quintano E, Díez I, Muguerza N, Santolaria A, Gorostiaga JM (2015) Epiphytic flora on Gelidium corneum (Rhodophyta: Gelidiales) in relation to wave exposure and depth. Sci Mar 79:479–486Google Scholar
  101. Ramos E, Puente A, Juanes JA (2016) An ecological classification of rocky shores at a regional scale: a predictive tool for management of conservation values. Mar Ecol 37:311–328Google Scholar
  102. Raudsepp-Hearne C, Peterson GD, Tengö M, Bennett EM, Holland T et al (2010) Untangling the environmentalist’s paradox: why is human well-being increasing as ecosystem services degrade? Bioscience 60:576–589Google Scholar
  103. Rico JM, Álvarez Raboso J, Llera EM (2009) Desaparición de los bosques de Laminarias en la costa de Asturias. Asturnatura 26:25–27Google Scholar
  104. Rodríguez EC, Moliner CC (2010) Checklist of benthic algae from the Asturias coast (North of Spain). Bol Cienc Nat 51:135–212Google Scholar
  105. Sanchez-Lorenzo A, Calbó J, Wild M (2013) Global and diffuse solar radiation in Spain: building a homogeneous dataset and assessing their trends. Glob Plan Chang 100:343–352Google Scholar
  106. Santos R, Duarte P (1991) Marine plant harvest in Portugal. J Appl Phycol 3:11Google Scholar
  107. Seoane-Camba J (1965) Estudios sobre las algas bentónicas en la costa sur de la Península Ibérica (litoral de Cádiz). Invest Pesq 29:3–216Google Scholar
  108. Simonson EJ, Scheibling RE, Metaxas A (2015) Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar Ecol Prog Ser 537:89–104Google Scholar
  109. Smale DA, Wernberg T (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc B 280:2012–2829Google Scholar
  110. Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038Google Scholar
  111. Smale DA, Wernberg T, Yunnie ALE, Vance T (2015) The rise of Laminaria ochroleuca in the Western English Channel (UK) and preliminary comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar Ecol 36:1033–1044Google Scholar
  112. Steneck RS, Johnson CR (2013) Kelp forests: dynamic patterns, processes, and feedbacks. In: Bertness MD, Bruno J, Silliman BR, Stachowicz JJ (eds) Marine community ecology. Sinauer Associates, Sunderland, MA, pp 315–336Google Scholar
  113. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459Google Scholar
  114. Sydeman WJ, García-Reyes M, Schoeman DS, Rykaczewski RR, Thompson SA, Black BA, Bograd SJ (2014) Climate change and wind intensification in coastal upwelling ecosystems. Science 345:77–80Google Scholar
  115. Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M (2012) Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol Evol 2:2854–2865Google Scholar
  116. Teagle H, Hawkins SJ, Moore PJ, Smale DA (2017) The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J Exp Mar Biol Ecol 492:81–89Google Scholar
  117. Thiers B (2017) continuously updated. Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium.
  118. Tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264Google Scholar
  119. Tuya F, Cacabelos E, Duarte P, Jacinto D, Castro JJ, Silva T, Bertocci I, Franco JN et al (2012) Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate. Mar Ecol Prog Ser 466:9–19Google Scholar
  120. van den Hoek C (1982) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:81–144Google Scholar
  121. Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM et al (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Nat Acad Sci 113:13791–13796Google Scholar
  122. Viejo RM, Martinez B, Arrontes J, Astudillo C, Hernandez L (2011) Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit. Ecography 34:75–84Google Scholar
  123. Voerman SE, Llera E, Rico JM (2013) Climate driven changes in subtidal kelp forest communities in NW Spain. Mar Environ Res 90:119–127Google Scholar
  124. Wahl M, Molis M, Hobday AJ, Dudgeon S, Neumann R, Steinberg P et al (2015) The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspect Phycol 2:11–29Google Scholar
  125. Walther GR, Post E, Convey P, Menzel A, Parmesan C (2002) Ecological responses to recent climate change. Nature 416:389–395Google Scholar
  126. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Nat Acad Sci 106:12377–12381Google Scholar
  127. Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832Google Scholar
  128. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T et al (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78Google Scholar
  129. Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M et al (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172Google Scholar
  130. Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359Google Scholar
  131. Yesson C, Bush LE, Davies AJ, Maggs CA, Brodie J (2015) Large brown seaweeds of the British Isles: evidence of changes in abundance over four decades. Estuar Coast Shelf Sci 155:167–175Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • P. Casado-Amezúa
    • 1
    • 2
    Email author
  • R. Araújo
    • 3
  • I. Bárbara
    • 4
  • R. Bermejo
    • 5
  • Á. Borja
    • 6
  • I. Díez
    • 7
  • C. Fernández
    • 8
  • J. M. Gorostiaga
    • 7
  • X. Guinda
    • 9
  • I. Hernández
    • 10
  • J. A. Juanes
    • 9
  • V. Peña
    • 4
  • C. Peteiro
    • 11
  • A. Puente
    • 9
  • I. Quintana
    • 7
  • F. Tuya
    • 12
  • R. M. Viejo
    • 1
  • M. Altamirano
    • 13
  • T. Gallardo
    • 14
  • B. Martínez
    • 1
    Email author
  1. 1.Biodiversity and Conservation UnitUniversity Rey Juan CarlosMóstolesSpain
  2. 2.EU-US Marine Biodiversity Research Group, Franklin InstituteUniversity of AlcaláAlcalá de HenaresSpain
  3. 3.European Commission, Joint Research Centre - Directorate for Sustainable Resources, Water and Marine Resources UnitIspraItaly
  4. 4.Dept. of Biology, Sciences FacultyUniversity of A CoruñaA CoruñaSpain
  5. 5.Irish Seaweed Research Group & Earth and Ocean Sciences Department, Ryan Institute and School of Natural SciencesNational University of IrelandGalwayIreland
  6. 6.AZTI, Marine Research DivisionHerrera KaiaPasaiaSpain
  7. 7.Dept. of Plant Biology and EcologyUniversity of the Basque Country UPV/EHUBilbaoSpain
  8. 8.Dept. B.O.S. (Ecología)University of OviedoOviedoSpain
  9. 9.Environmental Hydraulics Institute “IH Cantabria”Universidad de Cantabria PCTCANSantanderSpain
  10. 10.Instituto Universitario de Investigaciones MarinasUniversity of CádizPuerto Real (Cadiz)Spain
  11. 11.Seaweed Culture Center, Oceanographic Center of SantanderSpanish Institute of Oceanography (IEO)SantanderSpain
  12. 12.Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran CanariaMarine Scientific and Technological ParkTeldeSpain
  13. 13.Dept. de Biología Vegetal (Botánica), Facultad de CienciasMálaga UniversityMálagaSpain
  14. 14.Dept. Biodiversidad, Ecología y Evolución, Facultad de BiologíaComplutense University of MadridMadridSpain

Personalised recommendations