Biodiversity and Conservation

, Volume 28, Issue 3, pp 655–669 | Cite as

Landscape predictors of rodent dynamics in fragmented rainforests

  • Norma P. Arce-Peña
  • Víctor Arroyo-RodríguezEmail author
  • Miriam San-José
  • Denisse Jiménez-González
  • Iván Franch-Pardo
  • Ellen Andresen
  • Luis Daniel Ávila-Cabadilla
Original Paper
Part of the following topical collections:
  1. Forest and plantation biodiversity


Land-use change threatens a large number of tropical species (so-called ‘loser’ species), but a small subset of disturbance-adapted species may proliferate in human-modified landscapes (‘winner’ species). Identifying such loser and winner species is critically needed to improve conservation plans, but this task requires longitudinal studies that are extremely rare. We assessed this topic with small rodent assemblages in the Lacandona rainforest, a relatively new and highly dynamic agricultural frontier from southeastern Mexico. In particular, we measured the abundance of four rodent species in 12 forest sites during a 6 year period. We related changes in abundance to differences across time in landscape structure (i.e., percentage of forest cover, matrix contrast, number of forest patches, and forest edge density) surrounding each site. Total rodent abundance was almost two times higher in 2016 than in 2011, although abundances were generally low in all years. The abundance of Heteromys desmarestianus increased through time, mainly in forest sites with increasing matrix contrast. Oryzomys sp. also tended to increase in abundance, especially in sites with decreasing edge density. Sigmodon toltecus remained stable through time, but Peromyscus mexicanus tended to decrease in abundance, particularly in sites with decreasing edge density and increasing matrix contrast across time. Therefore, spatial variations in landscape structure lead to species-specific responses. If current deforestation rates persist, we predict a population decline of forest-specialist species (P. mexicanus), and an increase in generalist species (S. toltecus and Oryzomys sp.). Improving matrix quality is crucial for preventing the extinction of forest-specialist rodent species.


Habitat fragmentation Human-modified landscape Lacandona rainforest Landscape structure Multi-scale approach Winner species 



We thank financial support provided by PAPIIT-DGAPA, UNAM (Grant IN-204215), CONACyT (Project 2015-253946), and Rufford Small Grants (No. 22049-1). N.P.A.P. obtained a graduate scholarship from CONACyT. This paper constitutes a partial fulfillment of the PhD program of the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM). V.A.-R. thanks PASPA-DGAPA-UNAM for funding his sabbatical stay at the Geomatics and Landscape Ecology Laboratory, Carleton University. The Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, provided logistical support. We thank Carlos Palomares Magaña (Escuela Nacional de Estudios Superiores Morelia, UNAM) for his technical support in GIS. H. Ferreira, A. Valencia and A. López also provided technical support. Three anonymous reviewers provided valuable insights on the manuscript. Livia León Paniagua (Faculty of Sciences, UNAM) and IDEA WILD provided some Sherman traps. We thank the landowners from the Marqués de Comillas region (Ixcán, Loma Bonita, Chajul, Pirú, Reforma, Galacia, Flor de Marqués), for allowing us to collect data on their properties, as well as the Montes Azules Biosphere Reserve, Natura y Ecosistemas Mexicanos A.C., and the National Commission of Natural Protected Areas (CONANP). A special acknowledgement to Audón Jamangapé and his family, as this study would not have been possible without their assistance in the field.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no other conflict of interest.

Ethical approval

This research adhered to national and international guidelines for the treatment of research animals, and was conducted in accordance with the legal requirements of the National Autonomous University of Mexico (UNAM), and the country of Mexico. We assured the welfare of all rodents captured in the study. We were granted access to the study sites by local communities, landowners, and the Montes Azules Biosphere Reserve, part of the National Commission of Natural Protected Areas of Mexico (CONANP).

Supplementary material

10531_2018_1682_MOESM1_ESM.docx (185 kb)
Supplementary material 1 (DOCX 185 kb)


  1. Andresen E, Arroyo-Rodríguez V, Escobar F (2018) Tropical biodiversity: the roles of biotic interactions in its origin, maintenance, function and conservation. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics. Springer, New York, pp 1–13Google Scholar
  2. Arriaga L, Espinoza J, Aguilar C et al (2000) Regiones terrestres prioritarias de México. CONABIO, Mexico CityGoogle Scholar
  3. Arroyo-Rodríguez V, Dias PAD (2010) Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am J Primatol 72:1–16CrossRefGoogle Scholar
  4. Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA et al (2016) Landscape composition is more important than landscape configuration for phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92CrossRefGoogle Scholar
  5. Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88CrossRefGoogle Scholar
  6. Banks-Leite C, Pardini R, Tambosi LR et al (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045CrossRefGoogle Scholar
  7. Barbaro L, Giffard B, Charbonnier Y et al (2013) Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Divers Distrib 20:149–159CrossRefGoogle Scholar
  8. Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106CrossRefGoogle Scholar
  9. Bovendorp RS, Brum FT, McCleery RA et al (2018) Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography. Google Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  11. Calcagno V, de Mazancourt C (2010) Glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Soft 34:1–29CrossRefGoogle Scholar
  12. Camara G, Souza RCM, Freitas UM et al (1996) SPRING: integrating remote sensing and GIS by object-oriented data modelling. Comp Graph 20:395–403CrossRefGoogle Scholar
  13. Campbell RE, Harding JS, Ewers RM et al (2011) Production land use alters edge response functions in remnant forest invertebrate communities. Ecol Appl 21:3147–3161CrossRefGoogle Scholar
  14. Carabias J, de la Maza J, Cadena R (2015) Conservación y desarrollo sustentable en la Selva Lacandona. 25 años de actividades y experiencias. Natura y Ecosistemas Mexicanos, Mexico CityGoogle Scholar
  15. Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH et al (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126CrossRefGoogle Scholar
  16. Ceballos G, Oliva G (2005) Los mamíferos silvestres de México. CONABIO & Fondo de Cultura Económica, Mexico CityGoogle Scholar
  17. Courtier S, Núñez JM, Kolb M (2012) Measuring tropical deforestation with error margins: a method for REDD monitoring in south-eastern Mexico. In: Sudarshana P (ed) Tropical forests. InTech, Shanghai, pp 269–296Google Scholar
  18. Crawley MJ (2007) The R book. Wiley, LondonCrossRefGoogle Scholar
  19. del Castillo RF (2015) A conceptual framework to describe the ecology of fragmented landscapes and implications for conservation and management. Ecol Appl 25:1447–1455CrossRefGoogle Scholar
  20. Dirzo R, Mendoza E, Ortiz P (2007) Size-related differential seed predation in a heavily defaunated Neotropical rainforest. Biotropica 39:355–362CrossRefGoogle Scholar
  21. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345:401–406CrossRefGoogle Scholar
  22. Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305CrossRefGoogle Scholar
  23. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  24. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  25. Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59CrossRefGoogle Scholar
  26. Fahrig L, Baudry J, Brotons L et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112CrossRefGoogle Scholar
  27. FAO (2016) State of the World’s Forests 2016. Forests and agriculture: land-use challenges and opportunities. FAO, RomeGoogle Scholar
  28. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. SAGE publications Inc, Thousand OaksGoogle Scholar
  29. Fryxell JM, Falls JB, Falls EA, Brooks RJ (1998) Long-term dynamics of small-mammal populations in Ontario. Ecology 79:213–225CrossRefGoogle Scholar
  30. Galán-Acedo C, Arroyo-Rodríguez V, Estrada A et al (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41:1–11CrossRefGoogle Scholar
  31. Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6CrossRefGoogle Scholar
  32. Galetti M, Bovendorp R, Guevara R (2015) Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol Conserv 3:824–830CrossRefGoogle Scholar
  33. Garmendia A, Arroyo-Rodríguez V, Estrada A et al (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344CrossRefGoogle Scholar
  34. Gascon C, Lovejoy TE, Bierregaard ROJ et al (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229CrossRefGoogle Scholar
  35. Gibson L, Lynam AJ, Bradshaw CJA et al (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341:1508–1510CrossRefGoogle Scholar
  36. Gorresen M, Willig MR (2004) Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. J Mamm 85:688–697CrossRefGoogle Scholar
  37. Hagolle O, Sylvander S, Huc M et al (2015) SPOT-4 (Take 5): simulation of Sentinel-2 time series on 45 large sites. Remote Sens 7:12242–12264CrossRefGoogle Scholar
  38. Howe HF, Davlantes J (2017) Waxing and waning of a cotton rat (Sigmodon toltecus) monoculture in early tropical restoration. Trop Conserv Sci 10:1–11Google Scholar
  39. Instituto Nacional de Ecología (2000) Programa de Manejo Reserva de la Biósfera Montes Azules. Secretaría de Medio Ambiente y Recursos Naturales, Mexico CityGoogle Scholar
  40. Isabirye-Basuta G, Kasenene JM (1987) Small rodent populations in selectively felled and mature tracts of Kibale Forest, Uganda. Biotropica 19:260–266CrossRefGoogle Scholar
  41. Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Global Ecol Biogeogr 24:52–63CrossRefGoogle Scholar
  42. Keesing F, Young TP (2014) Cascading consequences of the loss of large mammals in an African Savanna. Bioscience 64:487–495CrossRefGoogle Scholar
  43. Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5:79–89CrossRefGoogle Scholar
  44. Laurance WF (1994) Rainforest fragmentation and the structure of small mammal communities in tropical Queensland. Biol Conserv 69:23–32CrossRefGoogle Scholar
  45. Lira PK, Ewers RM, Banks-Leite C, Pardini R, Metzger JP (2012) Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest. J Appl Ecol 49:1325–1333CrossRefGoogle Scholar
  46. Malcolm JR (1995) Forest structure and the abundance and diversity of Neotropical small mammals. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 179–197Google Scholar
  47. Maza BG, French NR, Aschwanden AP (1973) Home range dynamics in a population of heteromyid rodents. J Mamm 54:405–425CrossRefGoogle Scholar
  48. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Accessed 07 November 2018
  49. McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140CrossRefGoogle Scholar
  50. Mech SG, Hallett JG (2001) Evaluating the effectiveness of corridors: a genetic approach. Conserv Biol 15:467–474CrossRefGoogle Scholar
  51. Medellín R (1994) Mammal diversity and conservation in the Selva Lacandona, Chiapas, Mexico. Conserv Biol 8:780–799CrossRefGoogle Scholar
  52. Medellín R, Equihua W (1998) Mammal species richness and habitat use in rainforest and abandoned agricultural fields in Chiapas, Mexico. J Appl Ecol 35:13–23CrossRefGoogle Scholar
  53. Meli P, Hernández-Cárdenas G, Carabias J et al (2015) La deforestación de los ecosistemas naturales en Marqués de Comillas. In: Carabias J, de la Maza J, Cadena R (eds) Conservación y desarrollo sustentable de la Selva Lacandona. Natura y Ecosistemas Mexicanos A.C, Mexico City, pp 247–259Google Scholar
  54. Melo F, Arroyo-Rodríguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468CrossRefGoogle Scholar
  55. Mendes C (2014) Patch size, shape and edge distance influences seed predation in a keystone palm in tropical rainforests. MS Thesis, Universidade Estadual Paulista, Instituto de Biociencias de Rio Claro, Rio ClaroGoogle Scholar
  56. Mendes C, Ribeiro MC, Galetti M (2015) Patch size, shape and edge distance influence seed predation on a palm species in the Atlantic forest. Ecography 38:1–11CrossRefGoogle Scholar
  57. Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of spatial landscape effects on species? Landsc Ecol 31:1177–1194CrossRefGoogle Scholar
  58. Neter J, Kutner MH, Nachtshein CJ et al (1996) Applied linear statistical models, 4th edn. McGraw-Hill/Irwin, New YorkGoogle Scholar
  59. Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv 13:2567–2586CrossRefGoogle Scholar
  60. Pardini R, Bueno AA, Gardner TA et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666CrossRefGoogle Scholar
  61. Pfeifer M, Lefebvre V, Peres CA et al (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191Google Scholar
  62. Reid FA (2009) A field guide to the mammals of Central America & Southeast Mexico. Oxford University Press, New YorkGoogle Scholar
  63. Rosin C, Poulsen JR (2016) Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. Forest Ecol Manage 382:206–213CrossRefGoogle Scholar
  64. San-José M, Arroyo-Rodríguez V, Sánchez-Cordero V (2014) Association between small rodents and forest patch and landscape structure in the fragmented Lacandona rainforest, Mexico. Trop Conserv Sci 7:403–422CrossRefGoogle Scholar
  65. Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Mod Soft 24:135–139CrossRefGoogle Scholar
  66. Silvy NJ, López RR, Peterson MJ (2005) Wildlife marking techniques. In: Braun EE (ed) Research and management techniques for wildlife and habitats. The Wildlife Society Inc., Bethesda, pp 339–376Google Scholar
  67. Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113CrossRefGoogle Scholar
  68. Tabarelli M, Peres CA, Melo FPL (2012) The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140CrossRefGoogle Scholar
  69. Terborgh J, López L, Nuñez P et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926CrossRefGoogle Scholar
  70. Trujano-Álvarez AL, Álvarez-Castañeda ST (2010) Peromyscus mexicanus (Rodentia: Cricetidae). Mamm Species 42:111–118CrossRefGoogle Scholar
  71. Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374CrossRefGoogle Scholar
  72. Vetter D, Hansbauer MM, Végvári Z et al (2011) Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34:1–8CrossRefGoogle Scholar
  73. Wolff PW, Sherman PW (2007) Rodent societies: an ecological & evolutionary perspective. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  74. Young HS, McCauley DJ, Dirzo R et al (2015) Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya. Ecol Appl 25:348–360CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Norma P. Arce-Peña
    • 1
  • Víctor Arroyo-Rodríguez
    • 1
    Email author
  • Miriam San-José
    • 1
  • Denisse Jiménez-González
    • 2
  • Iván Franch-Pardo
    • 3
  • Ellen Andresen
    • 1
  • Luis Daniel Ávila-Cabadilla
    • 3
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Colegio de Bachilleres del Estado de Puebla (COBAEP)PueblaMexico
  3. 3.Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations