Advertisement

Biodiversity and Conservation

, Volume 28, Issue 2, pp 501–522 | Cite as

When dynamism is the baseline: long-term ecology of a Mediterranean seasonal wetland in the Doñana National Park (Southwestern Europe)

  • Saúl Manzano
  • José S. Carrión
  • Pablo García-Murillo
  • Lourdes López-Merino
Original Paper
  • 258 Downloads

Abstract

Mediterranean seasonal wetlands are amongst the world’s most endangered ecosystems. Although seasonal wetlands’ conservation is a European continental-scale priority, their long-term ecological dynamics are not well known, hampering the detection of baseline conditions. However, a long-term ecological viewpoint could aid in the detection of spatiotemporal factors controlling wetland development. We have applied a multi-proxy palaeoecological approach (palynological, microcharcoal, magnetic susceptibility, loss on ignition and diversity estimates analyses) on a 360-cm core retrieved from the El Sopetón (ElSo), a temporary wetland nested between dunes in the paradigmatic Doñana coastal area. The palaeoecological analyses reveal ~ 300–500-year-long wetland phases linked to dune immobilisation during humid periods. During the first wetland phase (AD ~ 40–315), upland and wetland vegetation diversity dynamics follow opposite trends owing to the different effect that dune proliferation had on them. Fixed dune landscapes provided upland spatial diversification, while they promoted a longer hydro-period in ElSo, simplifying wetland vegetation. During the second wetland phase (AD ~ 1550–2012), land-use change drove environmental dynamics. The mid-eighteenth-century pine afforestation to fix moving dunes marked an environmental tipping point, with the ElSo wetland transitioning from seasonal to permanent. This translated into a rising trend in upland diversity and a decreasing trend in the wetland one. Despite the recent pine afforestation, the palaeoecological findings evidence the autochthonous character of Pinus pinea, as well as the naturalness of the wetland species Hydrocharis morsus-ranae and Ricciocarpos natans. The geomorphological dynamism of the diverse Doñana coastal setting is the baseline for the area, modulating wetland-upland water connectivity and, ultimately, controlling biodiversity trends. The preservation of Doñana natural dynamism and landscape heterogeneity should be considered for the management, conservation and restoration of its seasonal wetlands.

Keywords

3170* habitat Baseline Holocene Iberian Peninsula Land-use change Palaeoecology Palynology Priority habitat Wetland conservation 

Notes

Acknowledgements

We thank the Ministerio de Medio Ambiente y Medio Rural y Marino, Organismo Autónomo de Parques Nacionales (Grant Number 261-2011), Ministerio de Economía y Competitividad (Grant Numbers CGL-BOS-2012-34717 and CGL-BOS 2015-68604), and Fundación Séneca (Grant Number 19434/PI/14) for funding this research. S. Manzano was supported by an FPI scholarship (BES-2013-064626). M. Munuera and S. Fernández assisted with fieldwork and core subsampling. A. Megías-Bas, J. Muñoz-Ruiz, V. Selma and M.D. Ortiz-Vidal contributed to the development of life art. This paper benefitted greatly from the comments of two anonymous referees.

Author contributions

JSC designed the outlay of this investigation and carried out preliminary fieldwork. JSC, PGM and SM participated in the site coring. Laboratory analyses were conducted by SM. LLM conducted numerical analyses. SM wrote the first draft of this article to which all authors, especially LLM, have revised and contributed to. The final version of the manuscript is the result of the collaboration of the four authors.

Supplementary material

10531_2018_1674_MOESM1_ESM.pdf (16.1 mb)
Supplementary material 1 (PDF 16510 kb)

References

  1. Anderson RS, Homola RL, Davis RB, Jacobson GL Jr (1984) Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Can J Bot 62:2325–2328CrossRefGoogle Scholar
  2. Badal E (1998) Interés económico del pino piñonero para los habitantes de la Cueva de Nerja. In: Sanchidrián JL, Simón MD (eds) Las culturas del Pleistoceno Superior en Andalucía. Patronato de la Cueva de Nerja, Málaga, pp 287–300Google Scholar
  3. Barredo I, Caudullo G, Dosio A (2016) Mediterranean habitat loss under future climate conditions: assessing impacts on the Natura 2000 protected area network. Appl Geogr 75:83–92CrossRefGoogle Scholar
  4. Blaauw, M. (2010). Methods and code for ‘classical’age-modelling of radiocarbon sequences. Quat Qeochronol 5(5):512–518CrossRefGoogle Scholar
  5. Blaustein L, Schwartz SS (2001) Why study ecology in temporary pools? Isr J Zool 47(4):303–312CrossRefGoogle Scholar
  6. Carrión JS, Fernández S, González-Sampériz P, Leroy SAG, López-Sáez JA, Burjachs, F, Gil-Romera G, Rodríguez-Sánchez E, García-Antón M, Gil-García MJ, Parra I, Santos L, López-García P, Yll EI, Dupré M (2009) Sterility cases and causes in Quaternary pollen analysis in the Iberian Peninsula: the advantages of reporting bad luck. Internet Archaeol. http://intarch.ac.uk/journal/issue25/5/toc.html
  7. Camacho A, Borja C, Valero-Garcés B, Sahuquillo M, Cirujano S, Soria JM, Rico E, de la Hera A, Santamans AC, García De Domingo A, Chicote A, Gosálvez RU (2009) 3170* Lagunas y charcas temporales mediterráneas (*). In: AA VV (ed) Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Ministerio de Medio Ambiente, Medio Rural y Marino, MadridGoogle Scholar
  8. Campos JM, Gómez Toscano A, Vidal NO, Pérez JA, Gómez C (2002) La factoría romana del Cerro del Trigo (Doñana, Almonte, Huelva). Anuario arqueológico de Andalucía 1999-III-1:330–348Google Scholar
  9. Carrión JS, Navarro C, Navarro J, Munuera M (2000) The interpretation of cluster pine (Pinus pinaster) in floristic-phytosociological classifications from a palaeoecological perspective. Holocene 10:243–252CrossRefGoogle Scholar
  10. Carrión JS, Yll EI, Willis KJ, Sánchez-Gómez P (2004) Holocene forest history of the eastern plateaux in the Segura Mountains (Murcia, southeastern Spain). Rev Palaeobot Palynol 132:219–236CrossRefGoogle Scholar
  11. Carrión JS, Finlayson C, Finlayson G, Fernández S, Allué E, López-Sáez A, López-García P, Fuentes N, Gil G, González-Sampériz P (2008) A coastal reservoir of biodiversity for Upper Pleistocene human populations. Quat Sci Rev 27:2118–2135CrossRefGoogle Scholar
  12. Costas S, Jerez S, Trigo RM, Goble R, Rebêlo L (2012) Sand invasion along the Portuguese coast forced by westerly shifts during cold climate events. Quat Sci Reviews 42:15–28CrossRefGoogle Scholar
  13. Cirujano S, Montes C, Martino P, Enríquez S, García Murillo P (1988) Contribución al estudio del género Riella Mont. (Sphaerocarpales, Riellaceae). Limnetica 4:41–50Google Scholar
  14. Cirujano S, Medina L, García Murillo P, Espinar JL (1998) Ricciocarpos natans (L.) Corda (Ricciaceae) en la Península Ibérica. An Jard Bot Madrid 56(2):366–368Google Scholar
  15. Custodio E (2001) Aguas subterráneas y humedales. El Plan estratégico español para la conservación y el uso racional de los humedales, en el marco de los ecosistemas acuáticos de que dependen, 33Google Scholar
  16. Dabrio CJ, Borja F, Zazo C, Boersma JR, Lario J, Goy JL, Polo MP (1996) Dunas eólicas y facies asociadas pleistocenas y holocenas en el acantilado del Asperillo (Huelva). Geogaceta 20(5):1089–1092Google Scholar
  17. Daoud-Boattour A, Muller SD, Ferchichi-Ben Jamaa H, Ben Saad-Limam S, Rhazi L, Soulié-Märsche I, Rouissi M, Touatti B, Ben Haj Jilani I, Mokthar Gammar A, Ghrabi-Gammar Z (2011) Conservation of Mediterranean wetlands: interest of historical approach. C R Biol 334:742–756CrossRefGoogle Scholar
  18. Díaz Paniagua C, Aragonés D (2015) Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34(2):407–424Google Scholar
  19. Díaz-Paniagua C, Fernández-Zamudio R, Florencio M, García-Murillo P, Gómez-Rodríguez C, Portheault A, Serrano L, Siljestrom P (2010) Temporary ponds from the Doñana national park: a system of natural habitats for the preservation of aquatic flora and fauna. Limnetica 29:41–58Google Scholar
  20. Díaz-Paniagua C, Fernández Zamudio MR, Serrano Martin L, Florencio Díaz M, Gómez Rodríguez C, Sousa A, Sánchez Castillo P, García-Murillo P, Siljestrom P (2015) El Sistema de Lagunas Temporales de Doñana, una red de hábitats acuáticos singulares. Organismo Autónomo de Parques Nacionales, Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  21. Díez MJ, Valdés B, Fernández I (1987) Atlas polínico de Andalucía Occidental. Instituto de Desarrollo Regional y Excma. Diputación de Cádiz, SevillaGoogle Scholar
  22. Dimbleby GW (1961) Soil pollen analysis. Eur J Soil Sci 12(1):1–10CrossRefGoogle Scholar
  23. Erdtman G (1969) Handbook of palynolgy: morphology, taxonomy, ecology. An introduction to the study of pollen grains and spores, HafnerGoogle Scholar
  24. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  25. Finsinger W, Tinner W, Hu F (2004). Rapid and accurate estimates of microcharcoal content in pollen slides. In: Charcoals from the past: cultural and palaeoenvironmental implications: proceedings of the Third International Meeting of Anthracology, Cavallino-Lecce (Italy), pp 121–124Google Scholar
  26. Fletcher WJ, Boski T, Moura D (2007) Palynological evidence for environmental and climatic change in the lower Guadiana valley, Portugal, during the last 13000 years. Holocene 17(4):481–494CrossRefGoogle Scholar
  27. Florencio M, Serrano L, Siljeström P, Fernandez-Zamudio R, Garcia-Murillo P, Díaz-Paniagua C (2014) The influence of geomorphology on the composition of aquatic flora and fauna within a temporary pond network. Limnetica 33(2):327–340Google Scholar
  28. García García F (2016) Doñana en su historia. Organismo Autónomo de Parques Nacionales. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  29. García Murillo P (2000) Restauración del complejo palustre del Abalario: la reconstrucción del paisaje. In: 1ª Reunión Internacional de Expertos sobre la Regeneración Hídrica de Doñana. Ministerio de Medio Ambiente, Madrid, pp. 117–130Google Scholar
  30. García-Murillo P, Cirujano S, Medina L, Sousa A (2000) ¿Se extinguirá Hydrocharis morsus-ranae L. de la Península Ibérica? Port Acta Biol 19:149–158Google Scholar
  31. García-Murillo P, Bazo E, Fernández Zamudio R (2014) The plants of Doñana National Park’s marisma (Spain): a key element for conservation of an emblematic European wetland. Cienc UAT 9(1):60–75CrossRefGoogle Scholar
  32. Garilleti B, Albertos B (2012) Atlas y Libro Rojo de los Briofitos amenazados de España. Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  33. Grimm EC (2011) Tilia software v. 1.7.16. State Museum, Springfield, Illinois, p 16Google Scholar
  34. Gómez-Bagghetun E, Reyez-García V, Olsson P, Montes C (2012) Traditional ecological knowledge and community resilience to environmental extremes: a case study in Doñana, SW Spain. Glob Environ Change 22(3):640–650CrossRefGoogle Scholar
  35. Granados M (1987) Transformaciones históricas de los ecosistemas del Parque Nacional de Doñana. PhD Thesis, Universidad de SevillaGoogle Scholar
  36. Granados M, Martín A, García Novo F (1988) Long-term vegetation changes on the stabilized dunes of Doñana National Park (SW Spain). Vegetatio 75:73–80CrossRefGoogle Scholar
  37. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electron 4(1):9Google Scholar
  38. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25(1):101–110CrossRefGoogle Scholar
  39. Jiménez-Moreno G, Rodríguez-Ramírez A, Pérez-Asensio JN, Carrión JS, López-Sáez JA, Villarías-Robles JJ, Contreras, C. (2015) Impact of late-Holocene aridification trend, climate variability and geodynamic control on the environment from a coastal area in SW Spain. Holocene 25(4):607–617CrossRefGoogle Scholar
  40. Kumar R, McInnes RJ, Everard M, Gardner RC, Kulindwa KAA, Wittmer H, Infante Mata, D (2017) Integrating multiple wetland values into decision-making. Ramsar Policy Brief No. 2., Ramsar Convention Secretariat, GlandGoogle Scholar
  41. Keeley JE, Zedler PH (1998) Characterization and global distribution of vernal pools. In: Witham CW, Bauder ET, Belk D, Ferren WR, Ornduff R. (eds) Ecology, conservation and management of vernal pool ecosystems. Proceedings from a 1996 conference, California Native Plant Society, SacramentoGoogle Scholar
  42. López Albacete I (2009) Vegetación del manto eólico de Doñana. PhD Thesis, Universidad de HuelvaGoogle Scholar
  43. López-Merino L, Martínez Cortizas A, López-Sáez JA (2011) Human-induced changes on wetlands: a study case from NW Iberia. Quat Sci Rev 30:2745–2754CrossRefGoogle Scholar
  44. López-Sáez JA, López García P, Martín Sánchez M (2002) Palaeoecology and Holocene environmental change from a saline lake in South West Spain: protohistorical and prehistorical vegetation in Cádiz Bay. Quat Int 93–94:197–206CrossRefGoogle Scholar
  45. Manzano M (2001) Clasificación de los humedales de Doñana atendiendo a su funcionamiento hidrológico. Hidrogeología y Recursos Hidrául 4:57–75Google Scholar
  46. Manzano M, Borja F, Montes C (2002) Metodología de tipificación hidrológica de los humedales españoles con vistas a su valoración funcional y a su gestión. Aplicación a los humedales de Doñana. Bol Geol Minero 113(3):313–330Google Scholar
  47. Manzano S, Carrión JS, López-Merino L, González-Sampériz P, Munuera M, Fernández S, Martín Lerma I, Gomez-Ferreras MC (2017) Mountain strongholds for woody angiosperms during the Late Pleistocene in SE Iberia. CATENA 149:701–712CrossRefGoogle Scholar
  48. Manzano S, Carrión JS, López-Merino L, Ochando J, Munuera M, Fernández S, González-Sampériz P (2018) Early to mid-Holocene spatiotemporal vegetation changes and tsunami impact in a paradigmatic coastal transitional system (Doñana National Park, southwestern Europe). Glob Planet Change 161:66–81CrossRefGoogle Scholar
  49. Manzano M, Custodio E, Lozano E, Higueras H (2013) Relationships between wetlands and the Doñana coastal aquifer (SW Spain). Groundw Ecosyst 169:169–182CrossRefGoogle Scholar
  50. Martínez F, Montero G (2004) The Pinus pinea woodlands along the coast of South western Spain: data for a new geobotanical interpretation. Plant Ecol 175:1–18CrossRefGoogle Scholar
  51. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean basin, setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  52. Menéndez-Amor J, Florschultz F (1973) Resultados del análisis paleobotánico de una capa de turba en las cercanías de Huelva (Andalucía). Estudios Geol 20:183–186Google Scholar
  53. Mooney SD, Tinner W (2011) The analysis of charcoal in peat and organic sediments. Mires Peat 7(9):1–18Google Scholar
  54. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, LondonGoogle Scholar
  55. Moreno JC (2008) Lista Roja 2008 de la flora vascular española. Dirección General de Medio Natural y Política Forestal. Ministerio de Medio Ambiente, y Medio Rural y Marino y Sociedad Española de Biología de la Conservación de Plantas, MadridGoogle Scholar
  56. Muñor-Reinoso JC, de Castro FJ (2005) Application of a statistical water-table model reveals connection between dunes and vegetation at Doñana. J Arid Environ 60:663–679CrossRefGoogle Scholar
  57. Muñoz Reinoso JC (1996) Tipología de las descargas sobre arenas de la reserve biológica de Doñana. Limnética 12(2):51–63Google Scholar
  58. Muñoz-Reinoso JC, García Novo F (2005) Multiscale control of vegetation patterns: the case of Doñana (SW Spain). Landsc Ecol 20:51–61CrossRefGoogle Scholar
  59. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5200 years. Nat Geosci 5:808–812CrossRefGoogle Scholar
  60. Pérez Latorre AV, Galán de Mera A, Cabezudo B (1999) Propuesta de aproximación sintáxonomica sobre las comunidades de gimnospermas de la provincia Bética (España). Acta Bot Malacitana 24:257–262Google Scholar
  61. Ramos-Román MJ, Jiménez-Moreno G, Anderson RS, García-Alix A, Toney JL, Jiménez-Espejo FJ, Carrión JS (2016) Centennial-scale vegetation and North Atlantic Oscillation changes during the Late Holocene in the southern Iberia. Quat Sci Rev 143:84–95CrossRefGoogle Scholar
  62. Reille M (1992) Pollen et Spores d’Europe et Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  63. Reille M (1995) Pollen et Spores d’Europe et Afrique du Nord. Supplement 1. Laboratoire de Botanique Historique et. Palynologie, MarseilleGoogle Scholar
  64. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  65. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España [escala] 1: 400.000.ICONAGoogle Scholar
  66. Rivas Martínez S, Costa M, Castroviejo S, Valdés E (1980) Vegetación de Doñana (Huelva, España). Lazaroa 2:5–190Google Scholar
  67. Rodrigo FS, Esteban Parra MJ, Pozo Vazquez D, Castro-Díez Y (1999) A 500 year precipitation record in Southern Spain. Int J Climatol 19:1233–1253CrossRefGoogle Scholar
  68. Rodríguez J, De Stefano L (2013) Intensively irrigated agriculture in the north-west of Doñana. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle?. Taylor & Francis Group, LondonGoogle Scholar
  69. Rodríguez Ramírez A (1997) Geomorfología del Parque Nacional de Doñana y su Entorno. Organismo Autónomo de Parques Nacionales. Ministerio de Medio Ambiente, MadridGoogle Scholar
  70. Rodríguez-Ramírez A, Villarías-Robles JJR, Pérez-Asensio JN, Santos A, Morales JA, Celestino-Pérez S, Santos-Arévalo FJ (2016) Geomorphological record of extreme wave events during Roman times in the Guadalquivir estuary (Gulf of Cádiz, SW Spain): an archaeological and palaeogeographical approach. Geomorphol 261:103–118CrossRefGoogle Scholar
  71. Rodríguez-Vidal J, Bardají T, Zazo C, Goy JL, Borja F, Dabrio CJ, Abad M (2014) Coastal dunes and marshes in Doñana National Park. In: Gutiérrez F, Gutiérrez M (eds) Landscapes and landforms of Spain. World Geomorphological Landscapes. Springer, DordrechtGoogle Scholar
  72. Saenz Laín C (1982) Polen de la flora de Doñana (Huelva, España). Lazaroa 2:191–270Google Scholar
  73. Serrano L, Serrano L (1996) Influence of groundwater exploitation for urban water supply on temporary ponds from the Doñana National Park (SW Spain). J Environ Manag 46:229–238CrossRefGoogle Scholar
  74. Silva JP, Phillips L, Jones W, Eldridge J, O’Hara E (2007) LIFE III. LIFE and Europe’s wetlands. Restoring a vital ecosystem. Environment Directorate General. European CommissionGoogle Scholar
  75. Solanki SK, Usoskin IG, Kromer B, Schülssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431:1084–1087CrossRefGoogle Scholar
  76. Sousa A, García-Murillo P (2005) Historia ecológica y evolución de las lagunas peridunares del Parque Nacional de Doñana. Madrid: Naturaleza y Parques Nacionales Serie Técnica. Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente, MadridGoogle Scholar
  77. Sousa Martín A, García Murillo P, Sahin S, Morales J, García Barrón L (2010) Wetland place names as indicators of manifestations of recent climate change in SW Spain (Doñana Natural Park). Clim Change 100(3):525–557CrossRefGoogle Scholar
  78. Stevenson AC (1984) Studies on the vegetational history of S.W. Spain. III. Palynological investigations at El Asperillo, Huelva. J Biogeogr 11:527–551CrossRefGoogle Scholar
  79. Stevenson AC (1985) Studies in the vegetational history of SW Spain. II. Palynological investigations at Laguna de las Madres, Huelva. J Biogeogr 12:293–314CrossRefGoogle Scholar
  80. Stevenson AC, Harrison RJ (1992) Ancient forests in Spain. A model for land-use and dry forest management in S.W. Spain from 4000 BC to 1900 AD. Proc Prehist Soc 58:227–247CrossRefGoogle Scholar
  81. Stevenson AC, Moore PD (1988) Studies in the vegetational history of S.W. Spain. IV: palynological investigations at El Acebrón, Huelva. J Biogeogr 15:339–361CrossRefGoogle Scholar
  82. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80CrossRefGoogle Scholar
  83. Valero-Garcés BL, González-Sampériz P, Delgado-Huertas A, Navas A, Machín J, Kelts K (2000) Lateglacial and Late Holocene environmental and vegetational change in Salada Mediana central Ebro Basin, Spain. Quat Int 73–74:29–46CrossRefGoogle Scholar
  84. van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, pp 99–119CrossRefGoogle Scholar
  85. Vegas-Vilarrúbia T, Rull V, Montoya E, Safont E (2011) Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics. Quat Sci Rev 30:2361–2388CrossRefGoogle Scholar
  86. Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in Coastal Aquifers. Ground Water 47:197–204CrossRefGoogle Scholar
  87. Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591CrossRefGoogle Scholar
  88. Yll EI, Zazo C, Goy JL, Pérez-Obiol R, Pantaleón-Cano J, Civis J, Roure JM (2003) Quaternary palaeoenvironmental changes in South Spain. In: Ruiz-Zapata B (ed) Quaternary climatic changes and environmental crises in the Mediterranean Region. Publicaciones de la Universidad de Alcalá, Alcalá de HenaresGoogle Scholar
  89. Zazo C, Goy JL, Somoza L, Dabrio CJ, Belluomini G, Impronta S, Silva PG (1994) Holocene sequence of sea level fluctuations in relation to climatic trends in the Atlantic-Mediterranean linkage coast. J Coast Res 10(4):933–945Google Scholar
  90. Zunzunegui M (1997a) Respuestas de la Vegetación a Ambientes Fluctantes en el Parque Nacional de Doñana. PhD Thesis. Universidad de SevillaGoogle Scholar
  91. Zunzunegui M, Barradas MC, García Novo F (1997) Autoecological notes of Halimium halimifolium at Doñana National Park. Lagascalia 19(1–2):725–736Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Saúl Manzano
    • 1
  • José S. Carrión
    • 1
  • Pablo García-Murillo
    • 2
  • Lourdes López-Merino
    • 3
  1. 1.Department of Plant Biology, Faculty of BiologyUniversity of MurciaMurciaSpain
  2. 2.Department of Plant Biology and Ecology, Faculty of PharmacyUniversity of SevilleSevilleSpain
  3. 3.Institute of Environment, Health and SocietiesBrunel University LondonUxbridgeUK

Personalised recommendations