Biodiversity and Conservation

, Volume 28, Issue 2, pp 451–466 | Cite as

Spatial and temporal effects of land use change as potential drivers of odonate community composition but not species richness

  • Maya Rocha-Ortega
  • Pilar Rodríguez
  • Alex Córdoba-Aguilar
Original Paper


Land-use changes and land cover change are drivers of diversity. The effects of such drivers over the temporal trend in species richness and composition, particularly on invertebrate diversity in megadiverse countries, is controversial. One key animal group to clarify this controversy is that of odonate insects (dragonflies and damselflies), given their combined close water-land requirements. We have investigated whether changes in land use impact species richness and composition of odonates from 1980 to 1993 (period I) to 1994–2010 (period II) in Mexico. The effect of land use changes and land cover changes on species richness was analyzed using multiple diversity measures and at different spatial scales. In period II, an area reduction in original vegetation and increase in land use occurred. Responses to land use varied among spatial scales and measures of diversity but, overall, species richness in the transformed area was higher than in the original vegetation. However, species composition indicated a high species turnover inside hydrologic regions (watersheds) and across land uses classes, particularly between original and secondary vegetation. Our interpretation is that despite high land use conversion in Mexico, adult odonates seem resilient to land use change in terms of species richness, but not in species composition, which is in partial agreement with the intermediate disturbance hypothesis. Finally, we suggest that hydrologic region scale and use of entropy maximization (HCDT entropy), could provide a reliable biodiversity estimation of species loss associated with land use change.


Habitat loss Land use Conservation Scale dependence Odonata 



This paper was financed by grants IN203115 and IN206618, and CONABIO JM006 to AC-A. MR-O had a CONACyT postdoctoral grant.

Supplementary material

10531_2018_1671_MOESM1_ESM.xlsx (24 kb)
Supplementary material 1 (XLSX 24 kb)
10531_2018_1671_MOESM2_ESM.docx (202 kb)
Supplementary material 2 (DOCX 202 kb)


  1. Abbot JC, Broglie D (2005) a Model for the Web-based Delivery of Natural History Information and Citizen Science. Am Entomol 51:240–243CrossRefGoogle Scholar
  2. Allan E, Manning P, Alt F et al (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843. CrossRefGoogle Scholar
  3. Ball-Damerow JE, M’Gonigle LK, Resh VH (2014) Local and regional factors influencing assemblages of dragonflies and damselflies (Odonata) in California and Nevada. J Insect Conserv. Google Scholar
  4. Beck J, Kitching I (2007) Estimating regional species richness of tropical insects from museum data: a comparison of a geography-based and sample-based methods. J Appl Ecol 44:672–681. CrossRefGoogle Scholar
  5. Bried JT, Mazzacano CA (2010) National review of state wildlife action plans for Odonata species of greatest conservation need. Insect Conserv Divers 3:61–71. CrossRefGoogle Scholar
  6. Bried JT, Hassall C, Simaika JP et al (2015) Directions in applied odonatology: preface to the special series. Freshw Sci 34:1020–1022. CrossRefGoogle Scholar
  7. Cardinale BJ, Gonzalez A, Allington GRH, Loreau M (2018) Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol Conserv 219:175–183. CrossRefGoogle Scholar
  8. Carvalho JC, Cardoso P, Borges PAV et al (2013) Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 122:825–834. CrossRefGoogle Scholar
  9. Challenger A, Dirzo R (2009) Factores de cambio y estado de la biodiversidad. In: Capital Natural de México, vol. II y tendencias de cambio. pp 37–73Google Scholar
  10. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547CrossRefGoogle Scholar
  11. Chao A, Shen T (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443CrossRefGoogle Scholar
  12. Clausnitzer V, Kalkman VJ, Ram M et al (2009) Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol Conserv 142:1864–1869. CrossRefGoogle Scholar
  13. Collins SD, McIntyre NE (2015) Modeling the distribution of odonates: a review. Freshw Sci 34:1144–1158. CrossRefGoogle Scholar
  14. Colwell RK, Coddington JA (1994) Estimating terrestrian biodiversity. Philos Trans R Soc Lond B Biol Sci 345:101–118CrossRefGoogle Scholar
  15. Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. CrossRefGoogle Scholar
  16. CONABIO (2009) Mexico: capacities for conservation and sustainable use of biodiversity. National Commission for the Knowledge and Use of Biodiversity and the United Nations Development Programme, Mexico City.Google Scholar
  17. CONABIO (2017) Geoportal del Sistema Nacional de información sobre Biodiversidad. In: Com. Nac. para el Conoc. y uso la Biodivers. Accessed 27 Feb 2017
  18. CONAGUA (2017) Mapa de regiones hidrológicas. In: Com. Nac. Agua. Accessed 21 May 2017
  19. Conrad KF, Willson KH, Harvey IF et al (1999) Dispersal characteristics of seven odonate species in an agricultural landscape. Ecography (Cop) 5:524–531CrossRefGoogle Scholar
  20. Convention on Biological Diversity (2016) The Convention on Biological Diversity. Accessed 27 Feb 2017
  21. Cribari-Neto F, da Silva WB (2011) A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model. AStA Adv Stat Anal 95:129CrossRefGoogle Scholar
  22. de Paiva Silva D, de Marco P, Resende DC (2010) Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol Indic 10:744–752. CrossRefGoogle Scholar
  23. De Palma A, Abrahamczyk S, Aizen MA et al (2016) Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases. Nat Sci Rep 6:31153. CrossRefGoogle Scholar
  24. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345:401–406. CrossRefGoogle Scholar
  25. Dornelas M, Magurran AE, Buckland ST et al (2013) Quantifying temporal change in biodiversity: challenges and opportunities. Proc R Soc B Biol Sci 280:20121931CrossRefGoogle Scholar
  26. Dornelas M, Gotelli NJ, McGill BJ et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–300CrossRefGoogle Scholar
  27. Duong TM, Gomez AB, Sherratt TN (2017) Response of adult dragonflies to artificial prey of different size and colour. PLoS ONE 12:1–14. CrossRefGoogle Scholar
  28. Dutra S, De Marco P (2015) Bionomic differences in odonates and their influence on the efficiency of indicator species of environmental quality. Ecol Indic 49:132–142CrossRefGoogle Scholar
  29. Engemann K, Enquist BJ, Sandel B et al (2015) Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecol Evol 5:807–820. CrossRefGoogle Scholar
  30. ESRI (2011) ArcMap GIS ver. 10.2.2. Environmental Systems Research, ERedlands, CAGoogle Scholar
  31. GBIF (2017) Global Biodiversity Information Facility. In: Accessed 5 Mar 2011
  32. Gonzalez A, Cardinale BJ, Allington GRH et al (2016) Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97:1949–1960. CrossRefGoogle Scholar
  33. Grewe Y, Hof C, Dehling DM et al (2013) Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob Ecol Biogeogr 22:403–409. CrossRefGoogle Scholar
  34. Hillebrand H, Blasius B, Borer ET et al (2018) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55:169–184. CrossRefGoogle Scholar
  35. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160. CrossRefGoogle Scholar
  36. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  37. Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17:59–71. CrossRefGoogle Scholar
  38. Larsen S, Chase JM, Durance I, Ormerod SJ (2018) Lifting the veil : richness measurements fail to detect systematic biodiversity change over three decades. Ecology 0:1–11. Scholar
  39. Legendre P, Gauthier O (2014) Statistical methods for temporal and space – time analysis of community composition data. Proc R Soc B Biol Sci 281:2013278CrossRefGoogle Scholar
  40. Maldonado C, Molina CI, Zizka A et al (2015) Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Glob Ecol Biogeogr 24:973–984. CrossRefGoogle Scholar
  41. Marcon E, Hérault B, Baraloto C, Lang G (2012) The decomposition of Shannon’s entropy and a confidence interval for beta diversity. Oikos 121:516–522. CrossRefGoogle Scholar
  42. Marcon E, Scotti I, Hérault B et al (2014a) Generalization of the partitioning of shannon diversity. PLoS ONE 9:e90289. CrossRefGoogle Scholar
  43. Marcon E, Zhang Z, Hérault B (2014b) The decomposition of similarity-based diversity and its bias correction. Hal 00989454:1–12Google Scholar
  44. Matthews TJ, Whittaker RJ (2014) Fitting and comparing competing models of the species abundance distribution: assessment and prospect. Front Biogeogr 6:67–82CrossRefGoogle Scholar
  45. Matthews TJ, Whittaker RJ (2015) On the species abundance distribution in applied ecology and biodiversity management. J Appl Ecol 52:443–454. CrossRefGoogle Scholar
  46. McGill BJ (2010) Matters of Scale. Science 328:575–576. CrossRefGoogle Scholar
  47. Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen L (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic 81:555–566. CrossRefGoogle Scholar
  48. Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. CrossRefGoogle Scholar
  49. Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  50. Prado PI, Miranda MD, Chalom A (2018) sads: Maximum Likelihood Models for Species Abundance Distributions. R Packag. version 3.5Google Scholar
  51. Primack RB, Miller-Rushing AJ, Corlett RT et al (2018) Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol Conserv 219:2017–2019. CrossRefGoogle Scholar
  52. R Development Core Team (2017) R: a language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria 0:
  53. Reid PC, Hari RE, Beaugrand G et al (2016) Global impacts of the 1980s regime shift. Glob Chang Biol 22:682–703. CrossRefGoogle Scholar
  54. Remsburg AJ, Turner MG (2009) Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J North Am Benthol Soc 28:44–56. CrossRefGoogle Scholar
  55. Rodrigues ME, de Oliveira Roque F, Quintero JMO et al (2016) Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol Conserv 194:113–120. CrossRefGoogle Scholar
  56. Sánchez-Herrera M, Ware JL (2011) Biogeography of dragonflies and damselflies: highly mobile predators. Glob Adv Biogeogr. Google Scholar
  57. SEMARNAT (2014) El medio ambiente en México. Ecosistemas terrestres. In: Secr. Medio Ambient. y Recur. Nat. Accessed 20 Nov 2017
  58. Suhonen J, Korkeamäki E, Salmela J, Kuitunen M (2014) Risk of local extinction of Odonata freshwater habitat generalists and specialists. Conserv Biol. Google Scholar
  59. Svensson JR, Lindegarth M, Jonsson PR, Pavia H (2012) Disturbance-diversity models: what do they really predict and how are they tested? Proc R Soc B Biol Sci 279:2163–2170. CrossRefGoogle Scholar
  60. Vellend M, Baeten L, Myers-Smith IH et al (2013) Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc Natl Acad Sci 110:19456–19459. CrossRefGoogle Scholar
  61. Vellend M, Dornelas M, Baeten L et al (2017) Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98:583–590. CrossRefGoogle Scholar
  62. Ver Hoef JM, Peterson EE, Hooten MB et al (2018) Spatial autoregressive models for statistical inference from ecological data. Ecol Monogr 88:36–59. CrossRefGoogle Scholar
  63. White EL, Hunt PD, Schlesinger MD et al (2015) Prioritizing Odonata for conservation action in the northeastern USA. Freshw Sci 34:1079–1093. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  2. 2.Comisión Nacional para el Conocimiento y Uso de la BiodiversidadMéxicoMexico

Personalised recommendations