Advertisement

Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado

  • José Alexandre Felizola Diniz-Filho
  • Ana Clara de Oliveira Ferraz Barbosa
  • Lázaro José Chaves
  • Kelly da Silva e Souza
  • Ricardo Dobrovolski
  • Ludmila Rattis
  • Levi Carina Terribile
  • Matheus Souza Lima-Ribeiro
  • Guilherme de Oliveira
  • Fernanda Thiesen Brum
  • Rafael Loyola
  • Mariana Pires de Campos Telles
Original Paper
  • 89 Downloads

Abstract

Conservation strategies aiming to safeguard species genetic diversity in the Cerrado are urgent. The biome is an agriculture frontier and lost at least 50% of its natural capital since the early 1950s, with the highest rate of vegetation clearing among all Brazilian biomes. Here we match information on geographic range shifts in response to climate changes and habitat loss to define conservation priorities for species genetic diversity using Eugenia dysenterica, a widely distributed tree across the Brazilian Cerrado. We found a set of 27 optimal solutions in which a minimum of 12 out of 23 populations are necessary to represent all 208 alleles of the species. Environmental suitability predicted for 2050 was higher for populations in the southern region of the Cerrado, whereas the proportion of natural remnants around populations expected for 2030 was lower in this same region. Thus, it seems to be more conservative to adopt “in situ” strategies in the northwestern part of the species range to hold more genetic diversity in areas harboring high numbers of natural remnants, despite the likely reduction in climatic suitability. On the other hand, in the southern and southeastern region of the range, despite more stability from a climatic point of view, there was a serious constraint given the high levels of human occupation; in this case, “ex situ” strategies might be a better option for the species. Our results and proposed priorities enable different strategies for making an operational approach for conservation of genetic diversity. Adopting different prioritization strategies for stable and unstable regions (both in climatic suitability and natural remnants) in the future would allow, in principle, to avoid “the worst of both worlds” to achieve an efficient conservation program for the species.

Keywords

Brazilian Cerrado Ecological niche modeling Eugenia dysenterica Genetic diversity Irreplaceability 

Notes

Acknowledgements

We thank Dr. Guarino Colli for invitation for this special issue and for his comments and suggestion in a first version of the manuscript, and to Charles J Marsh and one anonymous reviewer for critical reading and suggestions. Our research program in geographical genetics and molecular ecology of Cerrado plants has been supported by the PRONEX projects “Núcleo de Excelência em Genética e Conservação de Espécies do Cerrado” - GECER (FAPEG/CNPq CP07-2009) and “Recursos Genéticos” (FAPEG/CNPq CP02/2012) and by several Grants and fellowships to the research network GENPAC (“Geographical Genetics and Regional Planning for natural resources in Brazilian Cerrado”) supported by CNPq, CAPES and FAPEG (Grants # 475182/2009-0; 563727/2010-1). A.C.O.F. Barbosa received a Doctoral fellowship from CAPES and FAPEG, whereas JAFDF, MPCT, LJC, LR and LCT are also supported by productivity Grants from CNPq. RL research has been constantly funded by CNPq (Grants #308532/2014-7, 479959/2013-7, 407094/2013-0, 563621/2010-9), “O Boticário” Group Foundation for the Protection of Nature (grant #PROG_0008_2013), and CNCFlora. This paper is a contribution of the Brazilian Network on Global Climate Change Research funded by CNPq (grant #437167/2016-0) and FINEP (grant #01.13.0353.00). This project is also now developed in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq (proc. 465610/2014-5) and FAPEG.

Supplementary material

10531_2018_1667_MOESM1_ESM.docx (331 kb)
Supplementary material 1 (DOCX 331 kb)

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistics (TSS). J Appl Ecol 43:1223–1232.  https://doi.org/10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  2. Alvarado-Serrano DF, Knowles L (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Res 14:233–248.  https://doi.org/10.1111/1755-0998.12184 CrossRefGoogle Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47.  https://doi.org/10.1016/j.tree.2006.09.010 CrossRefPubMedGoogle Scholar
  4. Barbosa ACOF, Collevatti RG, Chaves LJ, Guedes LBS, Diniz-Filho JAF, Telles MPC (2015) Range-wide genetic differentiation of E. dysenterica (Myrtaceae) populations in Brazilian Cerrado. Bioch Syst Ecol 59:288–296.  https://doi.org/10.1016/j.bse.2015.02.004 CrossRefGoogle Scholar
  5. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT et al (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819.  https://doi.org/10.1016/j.ecolmodel.2011.02.011 CrossRefGoogle Scholar
  6. Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16:242–248.  https://doi.org/10.1016/S0169-5347(01)02125-5 CrossRefPubMedGoogle Scholar
  7. Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, Oliveira G, Rangel TF, Rabelo SG, Diniz-Filho JAF (2012) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol 21:5843–5863.  https://doi.org/10.1111/mec.12071 CrossRefGoogle Scholar
  8. Collevatti RG, Terribile LC, Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, Diniz-Filho JAF (2013) Drawbacks in paleodistribution modelling: the case of South American seasonally dry forests. J Biogeogr 40:345–358.  https://doi.org/10.1111/jbi.12005 CrossRefGoogle Scholar
  9. Diniz-Filho JAF, Telles MPC (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv Biol 16:924–935.  https://doi.org/10.1046/j.1523-1739.2002.00295.x CrossRefGoogle Scholar
  10. Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogues-Bravo D, Araújo MB (2009a) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906.  https://doi.org/10.1111/j.1600-0587.2009.06196.x CrossRefGoogle Scholar
  11. Diniz-Filho JAF, Nabout JC, Bini LM, Soares TN, Telles MPC, DeMarco P, Collevatti RG (2009b) Niche modeling and landscape genetics of Caryocar Brasiliense (“Pequi tree; Caryocaraceae) in Brazilian Cerrado: an integrative approach for evaluating central-peripheral population patterns. Tree Genet Genom 5:617–627.  https://doi.org/10.1007/s11295-009-0214-0 CrossRefGoogle Scholar
  12. Diniz-Filho JAF, Melo DB, Oliveira G, Collevatti RG, Soares TN, Nabout JC, Lima JS, Dobrovolski R, Chaves LJ, Naves RV, Loyola RD, Telles MPC (2012) Planning for optimal conservation of geographical genetic variability within species. Conserv Genet 13:1085–1093.  https://doi.org/10.1007/s10592-012-0356-8 CrossRefGoogle Scholar
  13. Diniz-Filho JAF, Rodrigues H, Telles MPC, Oliveira G, Terribile LC, Soares TN, Nabout JC (2015) Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Mol Ecol Res 15:1059–1066.  https://doi.org/10.1111/1755-0998.12374 CrossRefGoogle Scholar
  14. Diniz-Filho JAF, Barbosa ACOF, Collevatti RG, Chaves LJ, Terribile LC, Lima-Ribeiro MS, Telles MPC (2016a) Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. J Biogeogr 43:167–177.  https://doi.org/10.1111/jbi.12622 CrossRefGoogle Scholar
  15. Diniz-Filho JAF, Diniz JVBPL, Telles MPC (2016b) Exhaustive search for conservation networks of populations representing genetic diversity. Genet Mol Res 15:1–10.  https://doi.org/10.4238/gmr.15017525 CrossRefGoogle Scholar
  16. Fernandes GW, Coelho MS, Machado RB, Ferreira ME, de Souza Aguiar LM, Dirzo R, Lopes CR (2016) Afforestation of savannas: an impending ecological disaster. Nat Conserv 14:146–151.  https://doi.org/10.1016/j.ncon.2016.08.002 CrossRefGoogle Scholar
  17. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  18. Garcia RA, Garcia RA, Cabeza M et al (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579.  https://doi.org/10.1126/science.1247579 CrossRefPubMedGoogle Scholar
  19. Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2.5-2. https://CRAN.R-project.org/package=raster
  20. Hoffmann AA, Sgro CM, Kristensen TN (2017) Revisiting adaptive potential, population size, and conservation. Trends Ecol Evol 32:506–517.  https://doi.org/10.1016/j.tree.2017.03.012 CrossRefPubMedGoogle Scholar
  21. Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233.  https://doi.org/10.1641/0006-3568(2004)054%5b0227:DTSSOS%5d2.0.CO;2 CrossRefGoogle Scholar
  22. IPCC (2014) Climate Change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team]. IPCC, Geneva, SwitzerlandGoogle Scholar
  23. Jay F, Manel S, Alvarez N, Durand EY, Thuiller W, Holderegger R, Taberlet P, Francois O (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Mol Ecol 21:2354–2368.  https://doi.org/10.1111/j.1365-294X.2012.05541.x CrossRefPubMedGoogle Scholar
  24. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713.  https://doi.org/10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
  25. Lima NE, Lima-Ribeiro MS, Tinoco CF, Terribile LC, Collevatti RG (2014) Phylogeography and ecological niche modelling, coupled with the fossil pollen record, unravel the demographic history of a Neotropical swamp palm through the Quaternary. J Biogeogr 41:673–686.  https://doi.org/10.1111/jbi.12269 CrossRefGoogle Scholar
  26. Lima JS, Telles MPC, Chaves LJ, Lima-Ribeiro MS, Collevatti RG (2017) Demographic stability and high historical connectivity explain the diversity of a savanna tree species in the Quaternary. Ann Bot 119:645–657.  https://doi.org/10.1093/aob/mcw257 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lima-Ribeiro MS, Nogués-Bravo D, Terribile LC, Persaram B, Diniz-Filho JAF (2013) Climate and humans set the place and time of proboscideans extinction in late Quaternary of South America. Palaeogeogr Palaeoclimatol Palaeoecol 392:546–556.  https://doi.org/10.1016/j.palaeo.2013.10.008 CrossRefGoogle Scholar
  28. Lira-Noriega A, Manthey JD (2014) Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68:1082–1093.  https://doi.org/10.1111/evo.12343 CrossRefPubMedGoogle Scholar
  29. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253.  https://doi.org/10.1038/35012251 CrossRefPubMedGoogle Scholar
  30. Marris E (2005) Conservation in Brazil: the forgotten ecosystem. Nature 437:944–945.  https://doi.org/10.1038/437944a CrossRefPubMedGoogle Scholar
  31. Meir E, Andelman S, Possingham HP (2004) Does conservation planning matter in a dynamic and uncertain world? Ecol Lett 7:615–622.  https://doi.org/10.1111/j.1461-0248.2004.00624.x CrossRefGoogle Scholar
  32. Ministério da Agricultura Pecuária e Abastecimento (2014) Projeções do Agronegócio: Brasil 2013/2014 a 2023/2024—Projeções de Longo Prazo. 5th edn. Brasília: Ministério da Agricultura, Pecuária e Abastecimento. Assessoria de Gestão Estratégica, p 100Google Scholar
  33. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kents J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  34. Nabout JC, Oliveira G, Magalhães MR, Terribile LC, Severo FA (2011) Global climate change and the production of Pequi fruits (Caryocar brasiliense) in the Brazilian Cerrado. Nat Conserv 9:55–60.  https://doi.org/10.4322/natcon.2011.006 CrossRefGoogle Scholar
  35. Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531.  https://doi.org/10.1111/j.1466-8238.2009.00476.x CrossRefGoogle Scholar
  36. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  37. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.  https://doi.org/10.1038/nature01286 CrossRefGoogle Scholar
  38. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501.  https://doi.org/10.1126/science.1196624 CrossRefPubMedGoogle Scholar
  39. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Monographs in population biology, vol 49. Princeton University Press, PrincetonGoogle Scholar
  40. Pironon S, Papuga G, Villellas J, Angert AL, Garcia MB, Thompson JD (2016) Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev Camb Philos Soc 92(4):187–1909.  https://doi.org/10.1111/brv.12313 CrossRefGoogle Scholar
  41. Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New York, pp 291–305CrossRefGoogle Scholar
  42. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Reside AE, Butt N, Adams VM (2017) Adapting systematic conservation planning for climate change. Biodivers Conserv 27:1–29.  https://doi.org/10.1007/s10531-017-1442-5 CrossRefGoogle Scholar
  44. Richards CL, Carstens BC, Knowles LL (2007) Distribution modeling and statistical phylogeography: an integrative framework for testing biogeographic hypotheses. J Biogeogr 34:1833–1845.  https://doi.org/10.1111/j.1365-2699.2007.01814.x CrossRefGoogle Scholar
  45. Sarkar S, Illoldi-Rangel P (2010) Systematic conservation planning: an updated protocol. Nat Conserv 8:19–26.  https://doi.org/10.4322/natcon.00801003 CrossRefGoogle Scholar
  46. Soares TN, Diniz-Filho JAF, Nabout JC, Telles MPC, Terribile L, Chaves LJ (2015) Patterns of genetic variability in central and peripheral populations of Dipteryx alata (Fabaceae) in the Brazilian Cerrado. Plant Syst Evol 301:1315–1324.  https://doi.org/10.1007/s00606-014-1155-0 CrossRefGoogle Scholar
  47. Soares-Filho BS et al (2013) OTIMIZAGRO: Uma Plataforma Integrada de Modelagem de Uso e Mudanças no Uso da Terra para o Brasil. Final report. Belo Horizonte (MG): Centro de Sensoriamento Remoto, Universidade Federal de Minas GeraisGoogle Scholar
  48. Soares-Filho B, Rajão R, Merry F, Rodrigues H, Davis J, Lima L, Macedo M, Coe M, Carneiro A, Santiago L (2016) Brazil’s market for trading forest certificates. PLoS ONE 11:e0152311.  https://doi.org/10.1371/journal.pone.0152311 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Spera SA, Galford GL, Coe MT, Macedo MN, Mustard JF (2016) Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob Change Biol 22:3405–3413.  https://doi.org/10.1111/gcb.13298 CrossRefGoogle Scholar
  50. Telles MPC, Coelho ASG, Chaves LJ, Diniz-Filho JAF, Valva FD (2003) Genetic diversity and population structure of Eugenia dysenterica DC. (“cagaiteira”—Myrtaceae) in Central Brazil: spatial analysis and implications for conservation and management. Conserv Genet 4:685–695.  https://doi.org/10.1023/B:COGE.0000006124.55109.5e CrossRefGoogle Scholar
  51. Telles MPC, Dobrovolski R, Souza KS, Lima JS, Collevatti RG, Soares TN, Chaves LJ, Diniz-Filho JAF (2014) Disentangling landscape effects on population genetic structure of a Neotropical savanna tree. Nat Conserv 12:65–70.  https://doi.org/10.4322/natcon.2014.012 CrossRefGoogle Scholar
  52. Terrible LC, Lima-Ribeiro MS, Araújo M, Bizao N, Collevatti RG, Dobrovolski R, Franco A, Guilhaumon F, Lima JS, Murakami DM, Nabout JC, Oliveira G, Oliveira LK, Rabello SG, Rangel TF, Simon LM, Soares TN, Telles MPC, Diniz-Filho JAF (2012) Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Nat Conserv 10:152–159.  https://doi.org/10.4322/natcon.2012.025 CrossRefGoogle Scholar
  53. Torres NM, De Marco Jr P, Santos T, Silveira L, Jácomo AT, Diniz-Filho JAF (2012) Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics. Divers Distrib 18:615–627.  https://doi.org/10.1111/j.1472-4642.2012.00892.x CrossRefGoogle Scholar
  54. VanderWal J, Shoo LP, Graham C, Willians SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modelling 22:589–594.  https://doi.org/10.1016/j.ecolmodel.2008.11.010 CrossRefGoogle Scholar
  55. Weber MM, Stevens RD, Diniz-Filho JAF, Grelle CEV (2017) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 40:817–828.  https://doi.org/10.1111/ecog.02125 CrossRefGoogle Scholar
  56. Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706.  https://doi.org/10.1111/j.1365-2699.2012.02715.x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • José Alexandre Felizola Diniz-Filho
    • 1
    • 2
  • Ana Clara de Oliveira Ferraz Barbosa
    • 3
  • Lázaro José Chaves
    • 4
  • Kelly da Silva e Souza
    • 5
  • Ricardo Dobrovolski
    • 6
  • Ludmila Rattis
    • 7
  • Levi Carina Terribile
    • 8
  • Matheus Souza Lima-Ribeiro
    • 8
  • Guilherme de Oliveira
    • 9
  • Fernanda Thiesen Brum
    • 10
  • Rafael Loyola
    • 1
    • 2
    • 11
  • Mariana Pires de Campos Telles
    • 12
    • 13
  1. 1.Departamento de Ecologia, ICBUniversidade Federal de Goiás (UFG)GoiâniaBrazil
  2. 2.Brazilian Research Network on Climate Change and Rede ClimaInstituto Nacional de Pesquisas EspaciaisSão PauloBrazil
  3. 3.Instituto Federal GoianoGoiâniaBrazil
  4. 4.Escola de Agronomia, UFGGoiâniaBrazil
  5. 5.Programa de Pós-Graduação em Genética & Biologia Molecular, ICBUFGGoiâniaBrazil
  6. 6.Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil
  7. 7.Instituto de Pesquisa Ambiental da Amazônia, IPAMCanaranaBrazil
  8. 8.Instituto de BiociênciasUFG (Regional Jataí)GoiâniaBrazil
  9. 9.Conservation Biogeography Laboratory, CCAABUniversidade Federal do Recôncavo da BahiaCruz das AlmasBrazil
  10. 10.Programa de Pós-Graduação em Ecologia & ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
  11. 11.Centro Nacional de Conservação da FloraInstituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  12. 12.Departamento de Genética, ICBUniversidade Federal de GoiásGoiâniaBrazil
  13. 13.Centro de Ciências Biológicas e AgráciasPontificia Universidade Católica de GoiásGoiâniaBrazil

Personalised recommendations