Advertisement

Biodiversity and Conservation

, Volume 28, Issue 1, pp 55–73 | Cite as

Trade-offs between sampling effort and data quality in habitat monitoring

  • Silvia Del VecchioEmail author
  • Edy Fantinato
  • Giulia Silan
  • Gabriella Buffa
Original Paper
Part of the following topical collections:
  1. Biodiversity protection and reserves

Abstract

The transect method has been widely used to monitor habitat conservation status and has been recently recommended as the best tool to monitor steep ecological gradients, such as those in coastal systems. Despite that, the effectiveness of the transect approach can be limited when considering the sampling effort in terms of time needed for sampling. Our work aimed at evaluating the efficacy of the transect approach in a Mediterranean coastal system. Specifically we aimed at evaluating the sampling effort versus the completeness of datasets obtained by performing belt transects in different ways specifically designed to progressively reduce the sampling effort: (i) sampling plots adjacently (“adjacent-plot transect”); (ii) sampling plots alternately (“alternate-plot transect”); (iii) sampling one plot at each plant community along the vegetation zonation (“zonation-plot transect”). We evaluated method efficiency in terms of number and type of habitats identified, spatial extent, species richness and composition, through multivariate analyses, null models and rarefaction curves. The sampling effort was measured in terms of time needed for sampling. The zonation-plot transect had the lowest sampling effort, but provided only an approximation of the state of the dunal communities. The alternate-plot transect showed the best trade-off between the sampling effort and the completeness of information obtained, and may be considered as a efficient option in very wide coastal systems. Our research provides guidelines that can be used in other coastal systems to choose the most cost-effective monitoring method thereby maximising the efficient use of monitoring resources.

Keywords

Coastal sand dunes Habitat risk assessment Data collection Sampling efficiency Belt transect 

Supplementary material

10531_2018_1636_MOESM1_ESM.pdf (569 kb)
Online Resource 1 DCA scatter diagram and cluster dendrogram of vegetation plots, for the three types of transects. Technical results of multivariate analyses relative to each transect are summarized in tables OR1, OR2, and OR3, respectively. The habitat 2130* was represented by 2 plant communities, one dominated by chamaephytes, with prevalence of Fumana procumbens and Helianthemum nummularium ssp. obscurum, corresponding to Tortulo-Scabiosetum, and one with prevalence of Lomelosia argentea and Medicago littoralis, corresponding to Sileno conicae-Avellinietum michelii. Plant communities nomenclature follows Sburlino et al. (2013). Supplementary material 1 (PDF 568 kb)
10531_2018_1636_MOESM2_ESM.pdf (184 kb)
Online Resource 2 Species composition and cover for each plant community in each type of transect. Focal species were only defined for Natura 2000 habitat types. Species nomenclature follows Conti et al. (2005). * Priority habitats (EU Habitat Directive). Supplementary material 2 (PDF 184 kb)
10531_2018_1636_MOESM3_ESM.pdf (701 kb)
Online Resource 3 Rarefaction curves of the indicator species groups for each plant community, in the adjacent- and alternate-plot transect. Bars represent the 95% confidence interval. The zonation-plot transect, as well as the habitat 1210 are not shown. Focal species of Helichrysum and Spartina communities are not shown, since they were not recognized as Natura 2000 habitats. Supplementary material 3 (PDF 701 kb)

References

  1. Acosta A, Ercole S, Stanisci A, Pillar VDP, Blasi C (2007) Coastal vegetation zonation and dune morphology in some Mediterranean ecosystems. J Coast Res 23:1518–1524CrossRefGoogle Scholar
  2. Almeida D, Alcaraz-Hernandez JD, Merciai R, Benejam L, Garcia-Berthou E (2017) Relationship of fish indices with sampling effort and land use change in a large Mediterranean river. Sci Total Environ 605:1055–1063CrossRefPubMedGoogle Scholar
  3. Angelini P, Casella L, Grignetti A, Genovesi P (2016) Manuali per il monitoraggio di specie e habitat di interesse comunitario (Direttiva 92/43/CEE) in Italia: habitat. ISPRA, Serie Manuali e linee guida, 142/2016Google Scholar
  4. Bazzichetto M, Malavasi M, Acosta A, Carranza ML (2016) How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecol Indic 71:618–626CrossRefGoogle Scholar
  5. Biondi E, Blasi C, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D, et al. (2009) Italian interpretation manual of the 92/43/EEC directive habitats. http://vnr.unipg.it/habitat/. Accessed 1 March 2017. Società Botanica Italiana. Ministero dell’Ambiente e della tutela del territorio e del mare, D.P.N
  6. Biondi E, Casavecchia S, Pesaresi S (2012) Nitrophilous and ruderal species as indicators of climate change. Case study from the Italian Adriatic coast. Plant Biosyst 146:134–142CrossRefGoogle Scholar
  7. Bland LM, Keith DA, Miller RM, Murray NJ, Rodríguez JP (2016) Guidelines for the application of IUCN Red List of ecosystems categories and criteria, Version 1.1. IUCN, Gland SwitzerlandGoogle Scholar
  8. Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29(1):62–77CrossRefGoogle Scholar
  9. Buffa G, Filesi L, Gamper U, Sburlino G (2007) Qualità e grado di conservazione del paesaggio vegetale del litorale sabbioso del Veneto (Italia settentrionale). Fitosociologia 44:49–58Google Scholar
  10. Caniglia G (2007) Stato attuale dei litorali del veneto. Fitosociologia 44:59–65Google Scholar
  11. Carpaneto GM, Campanaro A, Hardersen S, Audisio P, Bologna MA, Roversi PF, Peverieri GS et al (2017) The LIFE Project “Monitoring of insects with public participation” (MIPP): aims, methods and conclusions. Nat Conserv 20:1–35CrossRefGoogle Scholar
  12. Celesti-Grapow L, Pretto F, Carli E, Blasi C (2010) Flora vascolare alloctona e invasiva delle regioni d’Italia. Casa Editrice Università La Sapienza, RomaGoogle Scholar
  13. Ciccarelli D (2014) Mediterranean coastal sand dune vegetation: influence of natural and anthropogenic factors. Environ Manage 54:194–204CrossRefPubMedGoogle Scholar
  14. Colwell R K (2013). EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates. Accessed 1 March 2018
  15. Commission European (2013) Interpretation manual of European Union habitats—EUR28. European Commission DG Environment, BrusselsGoogle Scholar
  16. Conn PB, Moreland EE, Regehr EV, Richmond EL, Cameron MF, Boveng PL (2016) Using simulation to evaluate wildlife survey designs: polar bears and seals in the Chukchi Sea. R Soc Open Sci 3:150–561CrossRefGoogle Scholar
  17. Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, RomaGoogle Scholar
  18. Del Vecchio S, Acosta A, Stanisci A (2013) The impact of Acacia saligna invasion on Italian coastal dune EC habitats. C R Biol 336:364–369CrossRefPubMedGoogle Scholar
  19. Del Vecchio S, Pizzo L, Buffa G (2015) The response of plant community diversity to alien invasion: evidence from a sand dune time series. Biodivers Conserv 24:371–392CrossRefGoogle Scholar
  20. Del Vecchio S, Slaviero A, Fantinato E, Buffa G (2016) The use of plant community attributes to detect habitat quality in coastal environments. AoB Plants.  https://doi.org/10.1093/aobpla/plw040 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Del Vecchio S, Fantinato E, Janssen JAM, Bioret F, Acosta A, Prisco I, Tzonev R, Marcenò C, Rodwell J, Buffa G (2018) Biogeographic variability of coastal perennial grasslands at the European scale. Appl Veg Sci 21:312–321CrossRefGoogle Scholar
  22. Dengler J (2009) Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr 36:728–744CrossRefGoogle Scholar
  23. Dengler J, Chytrý M, Ewald J (2008) Phytosociology. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 2767–2779CrossRefGoogle Scholar
  24. Evans D, Arvela M (2011) Assessment and reporting under the habitats directive. European Topic Centre on Biological Diversity, ParisGoogle Scholar
  25. Fenu G, Carboni M, Acosta A, Bacchetta G (2012) Environmental factors influencing coastal vegetation pattern: new insights from the Mediterranean basin. Folia Geobot 48:493–508CrossRefGoogle Scholar
  26. Gamper U, Filesi L, Buffa G, Sburlino G (2008) Diversità fitocenotica delle dune costiere nordadriatiche 1—Le comunità fanerofitiche. Fitosociologia 45:3–21Google Scholar
  27. Geri F, La Porta N, Zottele F, Ciolli M (2016) Mapping historical data: recovering a forgotten floristic and vegetation database for biodiversity monitoring. Isprs Int Geo-Inf 5:100CrossRefGoogle Scholar
  28. Gigante D, Attorre F, Venanzoni R et al (2016a) A methodological protocol for Annex I Habitats monitoring: the contribution of vegetation science. Plant Sociol 53:77–78Google Scholar
  29. Gigante D, Foggi B, Venanzoni R, Viciani D, Buffa G (2016b) Habitats on the grid: the spatial dimension does matter for red-listing. J Nat Conserv 32:1–9CrossRefGoogle Scholar
  30. Gigante D, Acosta ATR, Agrillo E, Armiraglio S, Assini S, Attorre F, Bagella S, Buffa G, Casella L, Giancola C, Giusso del Galdo GP, Marcenò C, Pezzi G, Prisco I, Venanzoni R, Viciani D (2018) Habitat conservation in Italy: the state of the art in the light of the first European Red List of Terrestrial and Freshwater Habitats. Rend Fis Acc Lincei 29:251–265CrossRefGoogle Scholar
  31. Gotelli NJ, Entsminger GL (2001) EcoSim: null models software for ecology. Version 7. Jericho, VT, Acquired Intelligence Inc. & Kesey-Bear. http://garyentsminger.com/ecosim/index.htm. Accessed 1 February 2018
  32. Henle K, Bauch B, Auliya M, Kuelvik M, Pe’er G, Schmeller DS, Framstad E (2013) Priorities for biodiversity monitoring in Europe: a review of supranational policies and a novel scheme for integrative prioritization. Ecol Indic 33:5–18CrossRefGoogle Scholar
  33. Hennekens SM (1996) TURBO(VEG). Software package for input, processing, and presentation of phytosociological data. IBN-DLO Wageningen, NL and University of Lancaster, UKGoogle Scholar
  34. Hill D, Fasham M, Tucker G, Shewry M, Shaw P (eds) (2005) Handbook of biodiversity methods, survey, evaluation and monitoring. Cambridge University Press, CambridgeGoogle Scholar
  35. Hughes BB, Beas-Luna R, Barner AK, Brewitt K, Brumbaugh DR, Cerny-Chipman EB, Close SL et al (2017) Long-term studies contribute disproportionately to ecology and policy. Bioscience 67:271–281CrossRefGoogle Scholar
  36. Ivajnšič D, Kaligarič M, Fantinato E, Del Vecchio S, Buffa G (2018) The fate of coastal habitats in the Venice Lagoon from the sea level rise perspective. Appl Geogr 98:34–42CrossRefGoogle Scholar
  37. Janssen J, Rodwell J, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N et al (2016) European Red List of Habitats. European Union, LuxembourgGoogle Scholar
  38. Jonsson BG, Moen J (1998) Patterns in species associations in plant communities: the importance of scale. J Veg Sci 9:327–332CrossRefGoogle Scholar
  39. Jucker T, Carboni M, Acosta A (2013) Going beyond taxonomic diversity: deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Divers Distrib 19:1566–1577CrossRefGoogle Scholar
  40. Keith DA, Rodríguez JP, Rodríguez-Clark KM, Nicholson E, Aapala K, Alonso A, Asmussen M et al (2013) Scientific foundations for an IUCN Red List of ecosystems. PLoS ONE 8:1–25CrossRefGoogle Scholar
  41. Kent M, Coker P (1992) Vegetation description and analyses. A practical approach. Belhaven Press, LondonGoogle Scholar
  42. Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143:1317–1328CrossRefGoogle Scholar
  43. Lovett GM, Burns DA, Driscoll CT, Jenkins JC, Mitchell MJ, Rustad L, Shanley JB et al (2007) Who needs environmental monitoring? Front Ecol Environ 5:253–260CrossRefGoogle Scholar
  44. Martínez Pastur G, Peri PL, Soler RM, Schindler S, Lencinas MV (2016) Biodiversity potential of Nothofagus forests in tierra del fuego (argentina): tool proposal for regional conservation planning. Biodivers Conserv 25:1843–1862CrossRefGoogle Scholar
  45. Maun MA (2009) The biology of coastal sandy dunes. Oxford University Press, OxfordGoogle Scholar
  46. McCune B, Mefford MJ (2006) PC-ORD multivariate analysis of ecological data. Version 5. Gleneden Beach, MjM Software, OregonGoogle Scholar
  47. McDonald-Madden E, Baxter PWJ, Fuller RA, Martin TG, Game ET, Montambault J, Possingham HP (2010) Monitoring does not always count. Trends Ecol Evol 25:547–550CrossRefPubMedGoogle Scholar
  48. Meyer C, Weigelt P, Kreft H (2016) Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol Lett 19:992–1006CrossRefPubMedGoogle Scholar
  49. Mikulyuk A, Hauxwell J, Rasmussen P, Knight S, Wagner KI, Nault ME, Ridgely D (2010) Testing a methodology for assessing plant communities in temperate inland lakes. Lake Reserv Manage 26:54–62CrossRefGoogle Scholar
  50. Peet RK, Roberts DW (2013) Classification of natural and semi-natural vegetation. In: van der Maarel E, Franklin J (eds) Vegetation ecology, 2nd edn. Oxford University Press, New York, pp 28–70CrossRefGoogle Scholar
  51. Prisco I, Acosta A, Ercole S (2012) An overview of the Italian coastal dune EU habitats. Ann Bot 2:39–48Google Scholar
  52. Prisco I, Stanisci A, Acosta A (2016) Mediterranean dunes on the go: evidence from a short term study on coastal herbaceous vegetation. Estuar Coast Shelf Sci 182:40–46CrossRefGoogle Scholar
  53. Rocchini D, Garzon-Lopez CX, Marcantonio M, Amici V, Bacaro G, Bastin L, Brummitt N et al (2017) Anticipating species distributions: handling sampling effort bias under a Bayesian framework. Sci Total Environ 584:282–290CrossRefPubMedGoogle Scholar
  54. Sburlino G, Buffa G, Filesi L, Gamper U (2008) Phytocoenotic originality of the N-Adriatic coastal sand dunes (Northern Italy) in the European context: the Stipa veneta-rich communities. Plant Biosyst 142:533–539CrossRefGoogle Scholar
  55. Sburlino G, Buffa G, Filesi L, Gamper U, Ghirelli L (2013) Phytocoenotic diversity of the N-Adriatic coastal sand dunes—the herbaceous communities of the fixed dunes and the vegetation of the interdunal wetlands. Plant Sociol 50:57–77Google Scholar
  56. Silan G, Del Vecchio S, Fantinato E, Buffa G (2017) Habitat quality assessment through a multifaceted approach: the case of the habitat 2130* in Italy. Plant Sociol 54:13–22Google Scholar
  57. Šilc U, Stevanović ZD, Ibraliu A, Luković M, Stešević D (2016) Human impact on sandy beach vegetation along the southeastern Adriatic coast. Biologia 71:865–874CrossRefGoogle Scholar
  58. Simeoni U, Valpreda E, Corbau C (2010) A national database on coastal dunes: Emilia-Romagna and southern Veneto littorals (Italy). In: Green D (ed) Coastal and marine geospatial technologies. Springer, Dordrecht, pp 87–96CrossRefGoogle Scholar
  59. Sperandii MG, Prisco I, Acosta A (2018) Hard times for italian coastal dunes: insights from a diachronic analysis based on random plots. Biodivers Conserv 27:633–646CrossRefGoogle Scholar
  60. Stanisci A, Acosta A, Carranza M, De Chiro M, Del Vecchio S, Di Martino L, Frattaroli A et al (2014) EU habitats monitoring along the coastal dunes of the LTER sites of Abruzzo and Molise (Italy). Plant Sociol 51:51–56Google Scholar
  61. Swacha G, Botta-Dukat Z, Kacki Z, Pruchniewicz D, Zolnierz L (2017) A performance comparison of sampling methods in the assessment of species composition patterns and environment-vegetation relationships in species-rich grasslands. Acta Soc Bot Pol 86:15CrossRefGoogle Scholar
  62. Westhoff V, van der Maarel E (1973) The Braun-Blanquet approach. In: Whittaker RH (ed) Handbook of vegetation science, part 5, Classification and ordination of communities. Dr. W. Junk, The Hague, pp 617–726CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Ca’ Foscari University of VeniceVeniceItaly

Personalised recommendations