Advertisement

Biodiversity and Conservation

, Volume 27, Issue 14, pp 3807–3817 | Cite as

Completeness of national freshwater fish species inventories around the world

  • Patricia Pelayo-Villamil
  • Cástor GuisandeEmail author
  • Ana Manjarrés-Hernández
  • Luz Fernanda Jiménez
  • Carlos Granado-Lorencio
  • Emilio García-Roselló
  • Jacinto González-Dacosta
  • Juergen Heine
  • Luis González-Vilas
  • Jorge M. Lobo
Original Paper

Abstract

The aim was to discriminate the countries with relatively comprehensive inventories of freshwater fishes from those with insufficiently prospected inventories. We used a data set of 16,734 freshwater fish species with a total of 1,373,449 occurrence records. Accumulation curves relating the increase in the number of species to the number of records, and completeness values obtained after extrapolating these curves to estimate the total number of predicted species were calculated for each country using the RWizard application KnowBR. Using the final slope values of the accumulation curves, the obtained completeness values, and the ratio between the number of records and the observed species, maps and plots representing the location of good, fair and poor quality inventories at country level were obtained. Inventory completeness ranged from 5.3% (Guinea-Bissau) to 108.4% (United Kingdom), with a pooled mean of 65.9%. We observed that a completeness higher than 90%, a slope lower than 0.02 and a ratio of records/species observed greater than 15 were good thresholds for identifying countries with good quality inventories; only 26 countries met these requirements, mainly located in Europe and North America. However, more than 71% of countries worldwide have inventories that can be categorised as of poor quality. Furthermore, even those countries with relatively accurate national inventories possess a high variability in the completeness of their provincial or regional inventories.

Keywords

Biodiversity databases Database records Species richness estimators Survey completeness Well-surveyed territories 

Supplementary material

10531_2018_1630_MOESM1_ESM.docx (781 kb)
Supplementary material 1 (DOCX 781 kb)
10531_2018_1630_MOESM2_ESM.pdf (14 mb)
Supplementary material 2 (PDF 14302 kb)
10531_2018_1630_MOESM3_ESM.docx (97 kb)
Supplementary material 3 (DOCX 97 kb)

References

  1. Anderson RP (2003) Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela. J Biogeogr 30:591–605CrossRefGoogle Scholar
  2. Anderson RP, Araújo M, Guisan A, Lobo JM, Martinez-Meyer E, Peterson AT, Soberón J (2016) Final report of the task group on GBIF data fitness for use in distribution modelling. GBIF, Geneva. http://www.gbif.org/resource/82612
  3. Clench H (1979) How to make regional lists of butterflies: some thoughts. J Lepid Soc 33:216–231Google Scholar
  4. Flather CH (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. J Biogeogr 23:155–168CrossRefGoogle Scholar
  5. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. García-Roselló E, Guisande C, González-Dacosta J, Heine J, Pelayo-Villamil P, Manjarrés-Hernández A, Vaamonde A, Granado-Lorencio C (2013) ModestR: a software tool for managing and analyzing species distribution map databases. Ecography 36:102–1207CrossRefGoogle Scholar
  7. García-Roselló E, Guisande C, Heine J, Pelayo-Villamil P, Manjarrés-Hernández A, González-Vilas L, González-Dacosta J, Vaamonde A, Granado-Lorencio C (2014) Using ModestR to download, import and clean species distribution records. Methods Ecol Evol 5:703–713CrossRefGoogle Scholar
  8. García-Roselló E, Guisande C, Manjarrés-Hernández A, González-Dacosta J, Heine J, Pelayo-Villamil P, Vari RP, Vaamonde A, Granado-Lorencio C, Lobo JM (2015) Can we derive macroecological patterns from primary GBIF data? Global Ecol Biogeogr 24:335–347CrossRefGoogle Scholar
  9. Guisande C, Lobo JM (2018) Discriminating well surveyed spatial units from exhaustive biodiversity databases. R package version. 1.3. http://cran.r-project.org/web/packages/KnowBR
  10. Guisande C, Manjarrés-Hernández A, Pelayo-Villamil P, Granado-Lorencio C, Riveiro I, Acuña A, Prieto-Piraquive E, Janeiro E, Matías JM, Patti C, Patti B, Mazzola S, Jiménez S, Duque V, Salmerón F (2010) IPez: an expert system for the taxonomic identification of fishes based on machine learning techniques. Fish Res 102:240–247CrossRefGoogle Scholar
  11. Guisande C, Heine J, González-DaCosta J, García-Roselló E (2014) RWizard Software. University of Vigo, VigoGoogle Scholar
  12. Hortal J, Lobo JM (2005) An ED-based protocol for the optimal sampling of biodiversity. Biodivers Conserv 14:2913–2947CrossRefGoogle Scholar
  13. Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858CrossRefGoogle Scholar
  14. Hortal J, Bello Fd, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549CrossRefGoogle Scholar
  15. Lobo JM (2008) Database records as a surrogate for sampling effort provide higher species richness estimations. Biodiv Conserv 17:873–881CrossRefGoogle Scholar
  16. Lobo JM, Martín-Piera F (2002) Searching for a predictive model for species richness of iberian dung beetle based on spatial and environmental variable. Conserv Biol 16:158–173CrossRefGoogle Scholar
  17. Lobo JM, Lumaret JP, Jay-Robert P (1997) Les atlas faunistiques comme outils d’analyse spatiale de la biodiversité. Ann Soc Entomol Fr 33:129–138Google Scholar
  18. Lobo JM, Hortal J, Yela JL, Millán A, Sánchez-Fernández D, García-Roselló E, González-Dacosta J, Heine J, González-Vilas L, Guisande C (2018) KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol Ind 91:241–248CrossRefGoogle Scholar
  19. Meyer C, Jetz W, Guralnick RP, Fritz SA, Kreft H (2015a) Global drivers of species variation in mobilized point-occurrence information. PeerJ PrePrints 3:e1493Google Scholar
  20. Meyer C, Kreft H, Guralnick RP, Jetz W (2015b) Global priorities for an effective information basis of biodiversity distributions. PeerJ PrePrints 3:e1057Google Scholar
  21. Mora C, Tittensor DP, Myers RA (2008) The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc R Soc B 275:149–155CrossRefPubMedGoogle Scholar
  22. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2017) Community Ecology Package. R package version 2.4-3. http://cran.r-project.org/web/packages/vegan
  23. Pelayo-Villamil P, Guisande C, Vari RP, Manjarrés-Hernández A, García-Roselló E, González-Dacosta J, Heine J, González-Vilas L, Patti B, Quinci EM, Jiménez LF, Granado-Lorencio C, Tedesco PA, Lobo JM (2015) Global diversity patterns of freshwater fishes—Potential victims of their own success. Divers Distrib 21:345–356CrossRefGoogle Scholar
  24. Rocchini D, Hortal J, Lengyel S, Lobo JM, Jiménez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226CrossRefGoogle Scholar
  25. Ruete A (2015) Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps. Biodivers Data J 3:e5361CrossRefGoogle Scholar
  26. Sainge MN, Onana JM, Nchu F, Kenfack D, Peterson AT (2017) Botanical sampling gaps across the cameroon mountains. Biodivers Inform 12:76–83CrossRefGoogle Scholar
  27. Soberón J, Llorente BJ (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488CrossRefGoogle Scholar
  28. Soberón J, Jimenez R, Golubov J, Koleff P (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160CrossRefGoogle Scholar
  29. Sousa-Baena MS, Garcia LC, Peterson AT (2014) Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers Distrib 20:369–381CrossRefGoogle Scholar
  30. Swanson B (2015) Moore’s Law at 50. The performance and prospects of the exponential economy. American Enterprise Institute for Public Policy Research, Washington, D.CGoogle Scholar
  31. Tedesco PA, Beauchard O, Bigorne R, Blanchet S, Buisson L, Conti L, Cornu JF, Dias MS, Grenouillet G, Hugueny B, Jézéquel C, Leprieur F, Brosse S, Oberdorff T (2017) A global database on freshwater fish species occurrence in drainage basins. Sci Data 4:170141.  https://doi.org/10.1038/sdata.2017.141 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Track E, Forbes N, Strawn G (2017) The end of Moore’s law. Comput Sci Eng 19:4–6CrossRefGoogle Scholar
  33. Troia MJ, McManamay RA (2016) Filling in the gaps: evaluating completeness and coverage of open-access biodiversity databases in the United States. Ecol Evol 6:4654–4669CrossRefPubMedPubMedCentralGoogle Scholar
  34. Troia MJ, McManamay RA (2017) Completeness and coverage of open-access freshwater fish distribution data in the United States. Divers Distrib 23:1482–1498CrossRefGoogle Scholar
  35. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897CrossRefGoogle Scholar
  36. Van Sickle J (2010) Basic GIS coordinates, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Patricia Pelayo-Villamil
    • 1
  • Cástor Guisande
    • 2
    Email author
  • Ana Manjarrés-Hernández
    • 3
  • Luz Fernanda Jiménez
    • 1
  • Carlos Granado-Lorencio
    • 4
  • Emilio García-Roselló
    • 5
  • Jacinto González-Dacosta
    • 5
  • Juergen Heine
    • 5
  • Luis González-Vilas
    • 2
  • Jorge M. Lobo
    • 6
  1. 1.Grupo de IctiologíaUniversidad de AntioquiaMedellínColombia
  2. 2.Facultad de CienciasUniversidad de VigoVigoSpain
  3. 3.Instituto Amazónico de Investigaciones-IMANIUniversidad Nacional de ColombiaLeticiaColombia
  4. 4.Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  5. 5.Departamento de Informática, Edificio FundiciónUniversidad de VigoVigoSpain
  6. 6.Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain

Personalised recommendations