Biodiversity and Conservation

, Volume 27, Issue 14, pp 3729–3744 | Cite as

Decline of rare and specialist species across multiple taxonomic groups after grassland intensification and abandonment

  • Andreas HilpoldEmail author
  • Julia Seeber
  • Veronika Fontana
  • Georg Niedrist
  • Alexander Rief
  • Michael Steinwandter
  • Erich Tasser
  • Ulrike Tappeiner
Original Paper


Traditionally managed mountain grasslands are declining as a result of abandonment or intensification of management. Based on a common chronosequence approach we investigated species compositions of 16 taxonomic groups on traditionally managed dry pastures, fertilized and irrigated hay meadows, and abandoned grasslands (larch forests). We included faunal above- and below-ground biodiversity as well as species traits (mainly rarity and habitat specificity) in our analyses. The larch forests showed the highest species number (345 species), with slightly less species in pastures (290 species) and much less in hay meadows (163 species). The proportion of rare species was highest in the pastures and lowest in hay meadows. Similar patterns were found for specialist species, i.e. species with a high habitat specificity. After abandonment, larch forests harbor a higher number of pasture species than hay meadows. These overall trends were mainly supported by spiders and vascular plants. Lichens, bryophytes and carabid beetles showed partly contrasting trends. These findings stress the importance to include a wide range of taxonomic groups in conservation studies. All in all, both abandonment and intensification had similar negative impacts on biodiversity in our study, underlining the high conservation value of Inner-Alpine dry pastures.


Biodiversity survey Land-use change Multi-taxon study Trait-based approach Biodiversity conservation 



For their help in organizing field campaigns, we thank Thomas Wilhalm, Michele Torresani, Alessandro Zandonai, Stefano Della Chiesa, the municipality of Mals/Malles and the village community of Matsch/Mazia. We acknowledge the Museum of Nature South Tyrol in Bozen/Bolzano for data base consultation. This study was conducted at the LTSER platform LTER_EU_IT_097 - Val Mazia/Matschertal, member of the national and international long term ecological research networks (LTER-Italy, LTER Europe and ILTER). The presented work was made possible by the funding of the Province of Bozen/Bolzano - South Tyrol for the LTSER platform. Finally, we thank Rachele Carloni for drawing cliparts of plants and animals.

Supplementary material

10531_2018_1623_MOESM1_ESM.docx (123 kb)
Supplementary material 1 (DOCX 123 kb)


  1. Bennett VJ, Betts MG, Smith WP (2014) Influence of thermal conditions on habitat use by a rare spring-emerging butterfly Euphydryas editha taylori. J Appl Entomol 138:623–634. CrossRefGoogle Scholar
  2. Block W (1966) Some characteristics of the Macfadyen high gradient extractor for soil micro-arthropods. Oikos 17:1–9CrossRefGoogle Scholar
  3. Boch S, Prati D, Scho I, Fischer M (2016) Lichen species richness is highest in non-intensively used grasslands promoting suitable microhabitats and low vascular plant competition. Biodivers Conserv 25:225–238. CrossRefGoogle Scholar
  4. Braschler B, Baur B (2016) Diverse effects of a seven-year experimental grassland fragmentation on major invertebrate groups. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Braun-Blanquet J (1964) Pflanzensoziologie, 3rd edn. Springer, WienCrossRefGoogle Scholar
  6. Brown AM, Warton DI, Andrew NR et al (2014) The fourth-corner solution—using predictive models to understand how species traits interact with the environment. Methods Ecol Evol 5:344–352. CrossRefGoogle Scholar
  7. Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol 32:429–437. CrossRefPubMedGoogle Scholar
  8. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228. CrossRefGoogle Scholar
  9. Commission European (2013) Interpretation manual of European Union habitats. CEC, BrusselsGoogle Scholar
  10. Cremene C, Groza G, Rakosy L et al (2005) Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv Biol 19:1606–1618. CrossRefGoogle Scholar
  11. Dierßen K (1990) Einführung in die Pflanzensoziologie (Vegetationskunde). Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  12. Egarter Vigl L, Schirpke U, Tasser E, Tappeiner U (2016) Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landsc Ecol 31:1903–1918. CrossRefGoogle Scholar
  13. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  14. Ellenberg H, Weber HE, Düll R et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248Google Scholar
  15. Ernst LM, Tscharntke T, Batáry P (2017) Grassland management in agricultural vs. forested landscapes drives butter fly and bird diversity. Biol Conserv 216:51–59. CrossRefGoogle Scholar
  16. Fahrig L, Baudry J, Brotons L et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. CrossRefPubMedGoogle Scholar
  17. Fartmann T, Krämer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indic 20:337–344. CrossRefGoogle Scholar
  18. Gámez-Virués S, Perović DJ, Gossner MM et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Graf R, Müller M, Korner P et al (2014) 20% loss of unimproved farmland in 22 years in the Engadin, Swiss Alps. Agric Ecosyst Environ 185:48–58. CrossRefGoogle Scholar
  20. Grandchamp A-C, Bergamini A, Stofer S et al (2005) The influence of grassland management on ground beetles (Carabidae, Coleoptera) in Swiss montane meadows. Agric Ecosyst Environ 110:307–317. CrossRefGoogle Scholar
  21. Halada L, David S, Hresko J et al (2017) Changes in grassland management and plant diversity in a marginal region of the Carpathian Mts. in 1999–2015. Sci Total Environ 609:896–905. CrossRefPubMedGoogle Scholar
  22. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190CrossRefPubMedGoogle Scholar
  23. Hülber K, Moser D, Sauberer N et al (2017) Plant species richness decreased in semi-natural grasslands in the Biosphere Reserve Wienerwald, Austria, over the past two decades, despite agri-environmental measures. Agric Ecosyst Environ 243:10–18. CrossRefGoogle Scholar
  24. Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia (Jena) 3:1–21Google Scholar
  25. Lacasella F, Gratton C, De Felici S et al (2015) Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest-grassland ecotone. Biodivers Conserv 24:447–465. CrossRefGoogle Scholar
  26. Lasanta T, Arnáez J, Pascual N et al (2017) Space–time process and drivers of land abandonment in Europe. CATENA 149:810–823. CrossRefGoogle Scholar
  27. Lasen C, Wilhalm T (2004) Natura-2000-Lebensräume in Südtirol. Abteilung Natur und Landschaft, Autonome Provinz Bozen-Südtirol, BolzanoGoogle Scholar
  28. Law BS, Dickman CR (1998) The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management. Biodivers Conserv 7:323–333CrossRefGoogle Scholar
  29. Lengyel S, Déri E, Magura T (2016) Species richness responses to structural or compositional habitat diversity between and within grassland patches: a multi-taxon approach. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lessard-Therrien M, Humbert J-Y, Hajdamowicz I et al (2018) Impacts of management intensification on ground-dwelling beetles and spiders in semi-natural mountain grasslands. Agric Ecosyst Environ 251:59–66. CrossRefGoogle Scholar
  31. Lyons A, Ashton PA, Powell I, Oxbrough A (2018) Habitat associations of epigeal spiders in upland calcareous grassland landscapes: the importance for conservation. Biodivers Conserv 27:1201–1219. CrossRefGoogle Scholar
  32. Marini L, Scotton M, Klimek S, Pecile A (2008) Patterns of plant species richness in Alpine hay meadows: local vs. landscape controls. Basic Appl Ecol 9:365–372. CrossRefGoogle Scholar
  33. Meinunger L (1992) Endangered bryophytes in the eastern part of Germany. Biol Conserv 211:211–214CrossRefGoogle Scholar
  34. Mottet A, Ladet S, Coqué N, Gibon A (2006) Agricultural land-use change and its drivers in mountain landscapes: a case study in the Pyrenees. Agric Ecosyst Environ 114:296–310. CrossRefGoogle Scholar
  35. Mucina L, Grabherr G, Ellmauer T (eds) (1993) Die Pflanzengesellschaften Österreichs, Teil 1: Anthropogene Vegetation. Gustav Fischer Verlag, JenaGoogle Scholar
  36. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New YorkGoogle Scholar
  37. Müller M, Spaar R, Jenni L (2005) Effects of changes in farming of subalpine meadows on a grassland bird, the whinchat (Saxicola rubetra). J Ornithol 146:14–23CrossRefGoogle Scholar
  38. Nadig A (1991) Die Verbreitung der Heuschrecken (Orthoptera: Saltatoria) auf einem Diagonalprofil durch die Alpen (Inntal-Maloja-Bregaglia-Lago di Como-Furche). Jahresbericht der Naturforschenden Gesellschaft Graubünden, Neue Folge 106:227–380Google Scholar
  39. Nascimbene J, Marini L, Bacaro G, Nimis PL (2010) Effect of reduction in sampling effort for monitoring epiphytic lichen diversity in forests. Community Ecol 11:250–256CrossRefGoogle Scholar
  40. Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. CrossRefGoogle Scholar
  41. Niederfriniger O, Schreiner P, Unterholzner L (1996) Aus der Luft gegriffen - Atlas der Vogelwelt Südtirols. Tappeiner Verlag, Athesia Verlag, BozenGoogle Scholar
  42. Niedrist G, Tasser E, Lüth C, Tappeiner U (2009) Plant diversity declines with recent land use changes in European Alps. Plant Ecol 202:195–210CrossRefGoogle Scholar
  43. Oksanen J, Blanchet FG, Kindt R et al (2017) VEGAN: community ecology packageGoogle Scholar
  44. Pecher C, Bacher M, Tasser E, Tappeiner U (2017) Agricultural landscapes between intensification and abandonment: the expectations of the public in a Central-Alpine cross-border region. Landsc Res 43:428–442. CrossRefGoogle Scholar
  45. Pedley SM, Franco AMA, Pankhurst T, Dolman PM (2013) Physical disturbance enhances ecological networks for heathland biota: a multiple taxa experiment. Biol Conserv 160:173–182. CrossRefGoogle Scholar
  46. Peer K, Frühauf J (2009) ÖPUL - Naturschutzmaßnahmen für gefährdete Wiesenbrüter in Tirol. Endbericht 2009. SteinachGoogle Scholar
  47. Pornaro C, Schneider MK, Macolino S (2013) Plant species loss due to forest succession in Alpine pastures depends on site conditions and observation scale. Biol Conserv 161:213–222. CrossRefGoogle Scholar
  48. R Core Team (2017) R: a language and environment for statistical computingGoogle Scholar
  49. RStudio Team (2015) RStudio: integrated development for RGoogle Scholar
  50. Scheidegger C, Groner U, Keller C, Stofer S (2002) Biodiversity assessment tools—lichens. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer, Dordrecht, pp 359–365CrossRefGoogle Scholar
  51. Seifert B (2017) The ecology of Central European non-arboreal ants-37 years of a broad-spectrum analysis under permanent taxonomic control. Soil Org 89:1–67Google Scholar
  52. Simons NK, Weisser WW, Gossner MM (2016) Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land—use intensity gradient. Ecology 97:754–764PubMedGoogle Scholar
  53. Slamova I, Klecka JAN, Konvicka M (2013) Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Divers 6:243–254. CrossRefGoogle Scholar
  54. Stehlik I, Caspersen JP, Wirth L, Holderegger R (2007) Floral free fall in the Swiss lowlands: environmental determinants of local plant extinction in a peri-urban. J Ecol 95:734–744. CrossRefGoogle Scholar
  55. Stoate C, Báldi A, Beja P et al (2009) Ecological impacts of early 21st century agricultural change in Europe—A review. J Environ Manag 91:22–46. CrossRefGoogle Scholar
  56. Tamanini L (1982) Gli Eterotteri dell’Alto Adige (Insecta: Heteroptera). Stud trentini Sci nat (Acta biol) 59:63–194Google Scholar
  57. Tasser E, Walde J, Tappeiner U et al (2007) Land-use changes and natural reforestation in the Eastern Central Alps. Agric Ecosyst Environ 118:115–129. CrossRefGoogle Scholar
  58. Tomasi M, Odasso M, Lasen C et al (2016) Metodologia per l’identificazione delle cenosi prative riconducibili agli habitat Natura 2000 “Praterie magre da fieno a bassa altitudine” (6510) e “Praterie montane da fieno” (6520) in Alto Adige – Südtirol. Gredleriana 16–62Google Scholar
  59. Turtureanu PD, Palpurina S, Becker T et al (2014) Scale- and taxon-dependent biodiversity patterns of dry grassland vegetation in Transylvania. Agric Ecosyst Environ 182:15–24. CrossRefGoogle Scholar
  60. Van Swaay C, Warren M (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. CrossRefGoogle Scholar
  61. Van Noordwijk CGE, Baeten L, Turin H et al (2017) 17 years of grassland management leads to parallel local and regional biodiversity shifts among a wide range of taxonomic groups. Biodivers Conserv 26:717–734. CrossRefGoogle Scholar
  62. Vermaat JE, Hellmann FA, van Teeffelen AJA et al (2017) Differentiating the effects of climate and land use change on European biodiversity: a scenario analysis. Ambio 46:277–290. CrossRefPubMedGoogle Scholar
  63. Wilhalm T (2018) Floristic biodiversity in South Tyrol (Alto Adige). In: Pedrotti F (ed) Climate gradients and biodiversity in Mountains of Italy, Geobotany. Springer, New York, pp 1–17Google Scholar
  64. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802. CrossRefGoogle Scholar
  65. Wohlfahrt G, Tasser E (2014) A mobile system for quantifying the spatial variability of the surface energy balance: design and application. Int J Biometeorol 59:617–627. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zografou K, Adamidis GC, Komnenov M (2017) Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. J Insect Conserv 21:531–543. CrossRefGoogle Scholar
  67. Zulka KP, Abensperg-Traun M, Milasowszky N et al (2014) Species richness in dry grassland patches of eastern Austria: a multi-taxon study on the role of local, landscape and habitat quality variables. Agric Ecosyst Environ 182:25–36. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute for Alpine EnvironmentEurac ResearchBolzanoItaly
  2. 2.Department of EcologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations