Advertisement

Biodiversity and Conservation

, Volume 27, Issue 13, pp 3425–3445 | Cite as

Effectiveness of genera as a higher-taxon substitute for species in ant biodiversity analyses is not affected by sampling technique

  • Jorge L. P. SouzaEmail author
  • Fabricio B. Baccaro
  • Pedro A. C. L. Pequeno
  • Elizabeth Franklin
  • William E. Magnusson
Original Paper

Abstract

Survey costs and a lack of taxonomists are often the main impediments to biodiversity inventories. The use of a higher-taxon approach that is efficient in representing species patterns within a short period of time is one way to overcome these constraints, especially if these responses are consistent at various spatial scales and sampling techniques. Here, we evaluated whether the use of pitfall trapping or Winkler extraction influenced the utility of genus as a surrogate to predict patterns of species richness and composition related to environment. The study sites were spread along 10 degrees of latitude, covering phytophysiognomies with different topographic characteristics. We recorded 450 ant species/morphospecies distributed in 70 genera. Pitfall-traps captured a larger proportion of species (77–98%) and genera (71–100%) per site. Genus was efficient in predicting variations in richness, and assemblage composition detected at the species level, using pitfall-traps or Winkler extractors. The higher-taxon approach saved approximately 40% of the surveys costs. The negative effect of the species-genus ratio was detected only on species composition, but it did not affect the quality of predictions using genera. The results are consistent with the hypothesis that genus can be used as a proxy for broader sets of species independent of sampling technique or environmental heterogeneity. The use of pitfall-traps or Winkler extractors for genus-level identification proved to be cost-efficient and time-efficient and should work well in other regions requiring conservation effort and monitoring programs.

Keywords

Amazon Ants Beta diversity Standardized sampling protocol Surrogate Tropical forest 

Notes

Acknowledgements

We thank all the anonymous reviewers who helped improve this manuscript. Juliana Araújo, Pollyana Cavalcante, Camila Gomes, Adriano Oliveira, Marcos Torres, Carlos Nogueira, Claudio Santos-Neto, and all field guides for help in sampling ants. Fernando Fernández, Jacques Delabie, John Longino, José Vilhena, Itanna Fernandes and Rodrigo Feitosa confirmed the species identifications for this study. Financial support was provided by the Fundação de Amparo à Pesquisas do Estado do Amazonas (FAPEAM) PIPT/1750/08, FIXAM/AM 062.01325/2014 and Universal Amazonas 62.00674/2015; the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) PNPD/03017/19-05; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), PRONEX 16/2006; the Programa de Pesquisa em Biodiversidade (PPBio) 558318/2009-6, 457545/2012-7; the Programa de Pesquisas Ecológicas de Longa Duração (PELD) 403764/2012-2; the Centro de Estudos Integrados da Biodiversidade Amazônica (CENBAM). PACLP was supported by a CNPq post-doctoral scholarship. FBB, EF and WEM held CNPq Productivity grants.

Supplementary material

10531_2018_1607_MOESM1_ESM.jpg (1.1 mb)
Supplementary material 1 (JPEG 1143 kb)
10531_2018_1607_MOESM2_ESM.docx (110 kb)
Supplementary material 2 (DOCX 109 kb)
10531_2018_1607_MOESM3_ESM.xlsx (53 kb)
Supplementary material 3 (XLSX 53 kb)
10531_2018_1607_MOESM4_ESM.xlsx (80 kb)
Supplementary material 4 (XLSX 80 kb)
10531_2018_1607_MOESM5_ESM.doc (35 kb)
Supplementary material 5 (DOC 35 kb)

References

  1. Agosti D, Majer JD, Alonso L, Schultz TR (2000a) Ants standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington DCGoogle Scholar
  2. Agosti D, Majer JD, Alonso LE, Schultz TR (2000b) Sampling ground dwelling ants: case studies from the World’s rain forests. AustraliaGoogle Scholar
  3. Alves C, Vieira C, Almeida R, Hespanhol H (2016) Genera as surrogates of bryophyte species richness and composition. Ecol Indic 63:82–88.  https://doi.org/10.1016/j.ecolind.2015.11.053 CrossRefGoogle Scholar
  4. Andersen AN (1995) Measuring more of biodiversity: genus richness as a surrogate for species in Australian ant faunas. Biol Conserv 73:39–43CrossRefGoogle Scholar
  5. Andersen AN (1997) Using ants as bioindicators: multiscale issues in ant community ecology. Ecol Soc 1:1–8Google Scholar
  6. Andersen AN (1999) My bioindicator or yours? Making the selection. J Insect Conserv 3:61–64CrossRefGoogle Scholar
  7. Andersen AN, Hoffmann BD, Müller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17CrossRefGoogle Scholar
  8. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  9. Angelo C (2016) Brazil’s scientists fight funding freeze. Nature 539:480.  https://doi.org/10.1038/nature.2016.21014 CrossRefPubMedGoogle Scholar
  10. Angelo C (2017) Brazilian scientists reeling as federal funds slashed by nearly half. Nature.  https://doi.org/10.1038/nature.2017.21766 CrossRefPubMedGoogle Scholar
  11. Baccaro FB, Feitosa RM, Fernandez F, et al (2015) Guia para os gêneros de formigas do Brasil, 1st edn.  https://doi.org/10.5281/zenodo.32912
  12. Balmford A, Green MJB, Murray MG (1996) Using higher-taxon richness as a surrogate for species richness: I. Regional tests. Proc R Soc B Biol Sci 263:1267–1274CrossRefGoogle Scholar
  13. Bestelmeyer BT, Agosti D, Alonso LE et al (2000) Field techniques for the study of ground-dwelling ants: an overview, description, and evaluation. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 122–145Google Scholar
  14. Bevilacqua S, Terlizzi A, Claudet J et al (2012) Taxonomic relatedness does not matter for species surrogacy in the assessment of community responses to environmental drivers. J Appl Ecol 49:357–366.  https://doi.org/10.1111/j.1365-2664.2011.02096.x CrossRefGoogle Scholar
  15. Bhusal DR, Kallimanis AS, Tsiafouli MA, Sgardelis SP (2014) Higher taxa vs. functional guilds versus trophic groups as indicators of soil nematode diversity and community structure. Ecol Indic 41:25–29.  https://doi.org/10.1016/j.ecolind.2014.01.019 CrossRefGoogle Scholar
  16. Bilton DT, Mcabendroth L, Bedford A, Ramsay PM (2006) How wide to cast the net? Cross-taxon congruence of species richness, community similarity and indicator taxa in ponds. Freshw Biol 51:578–590.  https://doi.org/10.1111/j.1365-2427.2006.01505.x CrossRefGoogle Scholar
  17. Borcard D, Gillet F, Legendre P et al (2011) Numerical ecology with R, 1st edn.  https://doi.org/10.1007/978-1-4419-7976-6 CrossRefGoogle Scholar
  18. Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004a) Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 120:517–524.  https://doi.org/10.1016/j.biocon.2004.03.024 CrossRefGoogle Scholar
  19. Cardoso P, Silva I, Oliveira NG, Serrano ARM (2004b) Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 117:453–459.  https://doi.org/10.1016/j.biocon.2003.08.013 CrossRefGoogle Scholar
  20. Carneiro FM, Bini LM, Rodrigues LC (2010) Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecol Indic 10:249–255.  https://doi.org/10.1016/j.ecolind.2009.05.004 CrossRefGoogle Scholar
  21. Caruso T, Migliorini M (2006) Micro-arthropod communities under human disturbance: is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecologica 30:46–53.  https://doi.org/10.1016/j.actao.2006.01.003 CrossRefGoogle Scholar
  22. Costa FRC, Magnusson WE (2010) The Need for large-scale, integrated studies of Biodiversity—the experience of the program for biodiversity research in Brazilian Amazonia. Nat Conserv 8:3–12.  https://doi.org/10.4322/natcon.00801001 CrossRefGoogle Scholar
  23. De Marques-Filho AO, de Ribeiro MNG, Santos HM, Santos JM (1981) Estudos climatologicos da reserva florestal Ducke-Manaus AM. IV. Precipitação. Acta Amaz 11:759–768CrossRefGoogle Scholar
  24. de Souza JLP, Baccaro FB, Landeiro VL et al (2012) Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Appl Soil Ecol 56:63–73.  https://doi.org/10.1016/j.apsoil.2012.01.004 CrossRefGoogle Scholar
  25. dos Ribas LGS, Padial AA (2015) The use of coarser data is an effective strategy for biological assessments. Hydrobiologia 747:83–95.  https://doi.org/10.1007/s10750-014-2128-6 CrossRefGoogle Scholar
  26. dos Santos JG, Malhado ACM, Ladle RJ et al (2015) Geographic trends and information deficits in Amazonian conservation research. Biodivers Conserv 24:2853–2863.  https://doi.org/10.1007/s10531-015-0981-x CrossRefGoogle Scholar
  27. Driessen MM, Kirkpatrick JB (2017) Higher taxa can be effective surrogates for species-level data in detecting changes in invertebrate assemblage structure due to disturbance: a case study using a broad range of orders. Austral Entomol.  https://doi.org/10.1111/aen.12315 CrossRefGoogle Scholar
  28. Ellis D (1985) Taxonomic sufficiency in pollution assessment. Mar Pollut Bull 16:459CrossRefGoogle Scholar
  29. Escobar H (2015) Fiscal crisis has Brazilian scientists scrambling. Science 349:909–910.  https://doi.org/10.1126/science.349.6251.909 CrossRefPubMedGoogle Scholar
  30. Fisher BL (1999) Improving inventory efficiency: a case study of leaf-litter ant diversity in Madagascar. Ecol Appl 9:714–731CrossRefGoogle Scholar
  31. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244CrossRefGoogle Scholar
  32. Franklin E, de Moraes J, Landeiro VL et al (2013) Geographic position of sample grid and removal of uncommon species affect multivariate analyses of diverse assemblages: the case of oribatid mites (Acari: Oribatida). Ecol Indic 34:172–180.  https://doi.org/10.1016/j.ecolind.2013.04.024 CrossRefGoogle Scholar
  33. French DD, Picozzi N (2002) Functional groups of bird species, biodiversity and landscapes in Scotland. J Biogeogr.  https://doi.org/10.1046/j.1365-2699.2002.00664.x CrossRefGoogle Scholar
  34. Gallego I, Davidson TA, Jeppesen E et al (2012) Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecol Indic 18:575–585.  https://doi.org/10.1016/j.ecolind.2012.01.002 CrossRefGoogle Scholar
  35. Gardner TA, Barlow J, Araujo IS et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150.  https://doi.org/10.1111/j.1461-0248.2007.01133.x CrossRefPubMedGoogle Scholar
  36. Gaspar C, Gaston KJ, Borges PAV (2010) Arthropods as surrogates of diversity at different spatial scales. Biol Conserv 143:1287–1294.  https://doi.org/10.1016/j.biocon.2010.03.007 CrossRefGoogle Scholar
  37. Gaston KJ (2000) Biodiversity: higher taxon richness. Prog Phys Geogr 24:117–127CrossRefGoogle Scholar
  38. Gaston KJ, Williams PH (1993) Mapping the world’s species-The higher taxon approach. Biodivers Lett 1:2–8CrossRefGoogle Scholar
  39. Gomes CB, Souza JLP, Franklin E (2018) A comparison between time of exposure, number of pitfall traps and the sampling cost to capture ground-dwelling poneromorph ants (Hymenoptera: Formicidae). Sociobiology 65:138–148.  https://doi.org/10.13102/sociobiology.v65i2.1207 CrossRefGoogle Scholar
  40. Gotelli NJ (2004) A taxonomic wish-list for community ecology. Philos Trans R Soc Lond B Biol Sci 359:585–597.  https://doi.org/10.1098/rstb.2003.1443 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gotelli NJG, Ellison AM, Dunn RR, Sanders N (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecological News 15:13–19Google Scholar
  42. Graça MB, Morais JW, Franklin E et al (2016) Combining taxonomic and functional approaches to unravel the spatial distribution of an Amazonian butterfly community. Environ Entomol 45:301–309.  https://doi.org/10.1093/ee/nvv183 CrossRefPubMedGoogle Scholar
  43. Graça MB, Souza JLP, Franklin E et al (2017) Sampling effort and common species: optimizing surveys of understorey fruit-feeding butterflies in the Central Amazon. Ecol Indic 73:181–188.  https://doi.org/10.1016/j.ecolind.2016.09.040 CrossRefGoogle Scholar
  44. Heino J (2014) Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: are the inferences transferable among regions? Ecol Indic 36:186–194.  https://doi.org/10.1016/j.ecolind.2013.07.022 CrossRefGoogle Scholar
  45. Heino J, Soininen J (2007) Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biol Conserv 137:78–89.  https://doi.org/10.1016/j.biocon.2007.01.017 CrossRefGoogle Scholar
  46. Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manage 35:649–666.  https://doi.org/10.1007/s00267-004-0211-x CrossRefPubMedGoogle Scholar
  47. Jones FC (2008) Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environ Rev 16:45–69.  https://doi.org/10.1139/A07-010 CrossRefGoogle Scholar
  48. Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a neotropical forest. Biotropica 32:703–711CrossRefGoogle Scholar
  49. Kessler M, Abrahamczyk S, Bos M et al (2011) Cost-effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats. J Appl Ecol 48:330–339.  https://doi.org/10.1111/j.1365-2664.2010.01932.x CrossRefGoogle Scholar
  50. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974CrossRefPubMedGoogle Scholar
  51. Lawler JJ, White D (2008) Assessing the mechanisms behind successful surrogates for biodiversity in conservation planning. Anim Conserv 11:270–280.  https://doi.org/10.1111/j.1469-1795.2008.00176.x CrossRefGoogle Scholar
  52. Leal IR, Bieber AGD, Tabarelli M, Andersen AN (2010) Biodiversity surrogacy: indicator taxa as predictors of total species richness in Brazilian Atlantic forest and Caatinga. Biodivers Conserv 19:3347–3360.  https://doi.org/10.1007/s10531-010-9896-8 CrossRefGoogle Scholar
  53. Legendre P, Legendre L (2003) Numerical ecology, 3rd edn. Angew Chemie Int Ed.  https://doi.org/10.1002/1521-3773(20010316)40:6%3c9823::aid-anie9823%3e3.3.co;2-c
  54. Longino JT, Colwell RK (1997) Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecol Appl 7:1263–1277CrossRefGoogle Scholar
  55. Lopes CT, Vasconcelos HL (2008) Evaluation of three methods for sampling ground-dwelling ants in the Brazilian Cerrado. Neotrop Entomol 37:399–405CrossRefPubMedGoogle Scholar
  56. Lovell S, Hamer M, Slotow R, Herbert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125.  https://doi.org/10.1016/j.biocon.2007.06.008 CrossRefGoogle Scholar
  57. Magnusson WE, Lima AP, Luizão R et al (2005) Rapeld: a modification of the gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotrop 5:1–6CrossRefGoogle Scholar
  58. Magnusson WE, Braga-neto R, Pezzini F et al (2013) Biodiversidade e monitoramento ambiental integrado biodiversity and integrated environmental monitoring, Primeira. Áttema Editorial, ManausGoogle Scholar
  59. Mandelik Y, Roll U, Fleischer A (2010) Cost-efficiency of biodiversity indicators for Mediterranean ecosystems and the effects of socio-economic factors. J Appl Ecol 47:1179–1188.  https://doi.org/10.1111/j.1365-2664.2010.01864.x CrossRefGoogle Scholar
  60. Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci 27:309–326CrossRefPubMedGoogle Scholar
  61. Mazaris AD, Kallimanis AS, Tzanopoulos J et al (2010) Can we predict the number of plant species from the richness of a few common genera, families or orders? J Appl Ecol 47:662–670.  https://doi.org/10.1111/j.1365-2664.2010.01814.x CrossRefGoogle Scholar
  62. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201CrossRefGoogle Scholar
  63. Mezger D, Pfeiffer M (2011) Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests. Ecography 34:39–48.  https://doi.org/10.1111/j.1600-0587.2010.06538.x CrossRefGoogle Scholar
  64. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetation 69:89–107.  https://doi.org/10.1007/BF00038690 CrossRefGoogle Scholar
  65. Nakamura A, Catterall CP, House APN et al (2007) The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use. J Insect Conserv 11:177–186.  https://doi.org/10.1007/s10841-006-9034-9 CrossRefGoogle Scholar
  66. Neeson TM, Van Rijn I, Mandelik Y (2013) How taxonomic diversity, community structure, and sample size determine the reliability of higher taxon surrogates. Ecol Appl 23:1216–1225CrossRefPubMedGoogle Scholar
  67. Oksanen J, Blanchet FG, Friendly M, et al (2018). vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan
  68. Oliveira PY, Souza JLP, Baccaro FB, Franklin E (2009) Ant species distribution along a topographic gradient in a “terrafirme” forest reserve in Central Amazonia. Pesqui Agropecuária Bras 44:852–860CrossRefGoogle Scholar
  69. Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity. Conserv Biol 7:562–568CrossRefGoogle Scholar
  70. Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109CrossRefGoogle Scholar
  71. Olson DM (1991) A comparison of the efficacy of litter and pitfall traps for sampling leaf litter ants (hymenoptera, Formicidae) in a tropical wet forests, Costa Rica. Biotropica 23:166–172CrossRefGoogle Scholar
  72. Parr CL, Chown SL (2001) Inventory and bioindicator sampling: testing pitfall and Winkler methods with ants in a South African savanna. J Insect Conserv 5:27–36CrossRefGoogle Scholar
  73. Peres-Neto P, Jackson D (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178.  https://doi.org/10.1007/s004420100720 CrossRefPubMedGoogle Scholar
  74. Pik AJ, Oliver I, Beattie AJ (1999) Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Aust J Ecol 24:555–562CrossRefGoogle Scholar
  75. Pinheiro J, Bates D, DebRoy S, et al (2017). nlme: linear and nonlinear mixed effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme
  76. Porto W, Pequeno PAL, Tourinho AL (2016) When less means more: reduction of both effort and survey methods boosts efficiency and diversity of harvestmen in a tropical forest. Ecol Indic 69:771–779.  https://doi.org/10.1016/j.ecolind.2016.05.014 CrossRefGoogle Scholar
  77. Prance GT (1994) A comparison of the efficacy of higher taxa and species numbers in the assessment of biodiversity in the neotropics. Philos Trans R Soc Lond B Biol Sci 345:89–99.  https://doi.org/10.1098/rstb.1994.0090 CrossRefGoogle Scholar
  78. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  79. Reyers B, Van Jaarsveld AS, Krüger M (2000) Complementarity as a biodiversity indicator strategy. Proc R Soc London 267:505–513CrossRefGoogle Scholar
  80. Ricketts TH, Daily GC, Ehrlich PR (2002) Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biol Conserv 103:361–370.  https://doi.org/10.1016/S0006-3207(01)00147-1 CrossRefGoogle Scholar
  81. Rosser N (2017) Shortcuts in biodiversity research: what determines the performance of higher taxa as surrogates for species? Ecol Evol 7:2595–2603.  https://doi.org/10.1002/ece3.2736 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rosser N, Eggleton P (2012) Can higher taxa be used as a surrogate for species-level data in biodiversity surveys of litter/soil insects? J Insect Conserv 16:87–92.  https://doi.org/10.1007/s10841-011-9395-6 CrossRefGoogle Scholar
  83. Sætersdal M, Gjerde I, Blom HH (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biol Conserv 122:305–316.  https://doi.org/10.1016/j.biocon.2004.07.020 CrossRefGoogle Scholar
  84. Santos EM, Franklin E, Magnusson WE (2008) Cost-efficiency of subsampling protocols to evaluate oribatid-mite communities in an Amazonian savanna. Biotropica 40:728–735.  https://doi.org/10.1111/j.1744-7429.2008.00425.x CrossRefGoogle Scholar
  85. Souza JLP, Moura CAR, Harada AY, Franklin E (2007) Diversidade de espécies dos gêneros de Crematogaster, Gnamptogenys e Pachycondyla (Hymenoptera: Formicidae) e complementaridade dos métodos de coleta durante a estação seca numa estação ecológica no estado do Pará, Brasil. Acta Amaz 37:649–656.  https://doi.org/10.1590/S0044-59672007000400022 CrossRefGoogle Scholar
  86. Souza JLP, Moura CAR, Franklin E (2009) Efficiency in inventories of ants in a forest reserve in Central Amazonia. Rev Agropecuária Bras 44:940–948CrossRefGoogle Scholar
  87. Souza JLP, Baccaro FB, Landeiro VL et al (2016) Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Divers Distrib 22:111–122.  https://doi.org/10.1111/ddi.12371 CrossRefGoogle Scholar
  88. Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173.  https://doi.org/10.1111/j.1523-1739.2004.00337.x CrossRefGoogle Scholar
  89. Tulloch A, Possingham HP, Wilson K (2011) Wise selection of an indicator for monitoring the success of management actions. Biol Conserv 144:141–154.  https://doi.org/10.1016/j.biocon.2010.08.009 CrossRefGoogle Scholar
  90. Ugland KI, Bjørgesæter A, Bakke T et al (2008) Assessment of environmental stress with a biological index based on opportunistic species. J Exp Mar Biol Ecol 366:169–174.  https://doi.org/10.1016/j.jembe.2008.07.021 CrossRefGoogle Scholar
  91. Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182.  https://doi.org/10.1016/j.biocon.2006.03.022 CrossRefGoogle Scholar
  92. Van Rijn I, Neeson TM, Mandelik Y (2015) Reliability and refinement of the higher taxa approach for bee richness and composition assessments. Ecol Appl 25:88–98.  https://doi.org/10.1890/13-2380.1 CrossRefPubMedGoogle Scholar
  93. Vasconcelos HL, Macedo ACC, Vilhena JMS (2003) Influence of topography on the distribution of ground-dwelling ants in an Amazonian forest. Stud Neotrop Fauna Environ 38:115–124CrossRefGoogle Scholar
  94. Vasconcelos HL, Frizzo TLM, Pacheco R et al (2014) Evaluating sampling sufficiency and the use of surrogates for assessing ant diversity in a neotropical biodiversity hotspot. Ecol Indic 46:286–292.  https://doi.org/10.1016/j.ecolind.2014.06.036 CrossRefGoogle Scholar
  95. Whittaker RJ, Araujo MB, Paul J et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23.  https://doi.org/10.1111/j.1366-9516.2005.00143.x CrossRefGoogle Scholar
  96. Williams PH, Gaston KHJ (1994) Measuring more of diversity: can higher-taxon richness predict wholesale species richness? Biol Conserv 67:211–217CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em EntomologiaInstituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
  2. 2.Programa de Pós-Graduação em Ciência e Tecnologia para Recursos AmazônicosInstituto de Ciências Exatas e Tecnologia (ICET)ItacoatiaraBrazil
  3. 3.Departamento de Biologia, Universidade Federal do Amazonas (UFAM)ManausBrazil
  4. 4.Programa de Pós-Graduação em Recursos NaturaisUniversidade Federal de Roraima (UFRR)Boa VistaBrazil
  5. 5.Coordenação de Pesquisas em Biodiversidade, INPAManausBrazil
  6. 6.Centro de Estudos Integrados da Biodiversidade Amazônica (CENBAM)ManausBrazil

Personalised recommendations