Advertisement

Biodiversity and Conservation

, Volume 27, Issue 12, pp 3119–3135 | Cite as

Influence of macroclimate and local conservation measures on taxonomic, functional, and phylogenetic diversities of saproxylic beetles and wood-inhabiting fungi

  • Simon Thorn
  • Bernhard Förster
  • Christoph Heibl
  • Jörg Müller
  • Claus Bässler
Original Paper
  • 143 Downloads

Abstract

Wood-inhabiting fungi and saproxylic beetles are threatened by habitat degradation. Our understanding of the importance of macroclimate and local factors determining their taxonomic diversity has increased, but determinants of functional and phylogenetic diversity are poorly understood. We investigated assemblages of wood-inhabiting fungi and saproxylic beetles along a 1000 m elevational gradient of a temperate low mountain range. We (i) tested the relative importance of macroclimate (i.e. elevation) and local variables (microclimate, i.e. canopy closure, amount and diversity of dead wood) in determining observed and rarefied diversities and (ii) explored whether determinants of observed functional and phylogenetic diversities match those of taxonomic diversity. For both taxa, the determinants of observed phylogenetic and functional diversities largely matched those of taxonomic diversity. The diversity of wood-inhabiting fungi was predominantly determined by local variables, whereas that of saproxylic beetles was determined by both local variables and elevation. Taxonomic and phylogenetic diversities of saproxylic beetles decreased with increasing elevation, but standardized functional richness and entropy of both groups increased with increasing elevation. Diversities of wood-inhabiting fungi increased with canopy closure, while diversities of saproxylic beetles decreased with increasing canopy closure. Microclimate and dead-wood amount and diversity affected the observed and rarefied diversity of both saproxylic taxa, which justifies conservation actions that focus on attributes of dead wood and canopy cover. The contrasting responses of fungi and beetles highlight the need for amounts of diverse dead wood in the various microclimates to preserve functional and phylogenetic diversities of saproxylic organisms.

Keywords

Species richness Diversity of saproxylic taxa Null models Assembly processes Climate change Forest conservation 

Notes

Acknowledgements

This research was supported by the Bavarian State Ministry of the Environment, Public Health, and Consumer Protection. We are grateful to Christoph Hahn and Heinrich Holzer for support in field work. We thank Karen A. Brune for linguistic revision of the manuscript.

Supplementary material

10531_2018_1592_MOESM1_ESM.docx (307 kb)
Supplementary material 1 (DOCX 1436 kb)

References

  1. Abrego N, Salcedo I (2013) Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: is it a question of quantity or quality? For Ecol Manag 291:377–385.  https://doi.org/10.1016/j.foreco.2012.11.025 CrossRefGoogle Scholar
  2. Abrego N, Norberg A, Ovaskainen O (2016) Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J Ecol 105:1070–1081.  https://doi.org/10.1111/1365-2745.12722 CrossRefGoogle Scholar
  3. Albrecht L (1990) Grundlagen, Ziele und Methodik der waldökologischen Forschung in Naturwaldreservaten, Naturwaldreservate in Bayern. Schriftenr. Bayer. Staatsministeriums für Ernährung, Landwirtschaft und Forsten, 75–88Google Scholar
  4. Baber K, Otto P, Kahl T, Gossner MM, Wirth C, Gminder A, Bässler C (2016) Disentangling the effects of forest-stand type and dead-wood origin of the early successional stage on the diversity of wood-inhabiting fungi. For Ecol Manag 377:161–169.  https://doi.org/10.1016/j.foreco.2016.07.011 CrossRefGoogle Scholar
  5. Bässler C, Förster B, Moning C, Müller J (2009) The BIOKLIM Project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework aims and structure of the BIOKLIM Project. Waldökologie-Online 7:21–34Google Scholar
  6. Bässler C, Müller J, Dziock F, Brandl R (2010) Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832.  https://doi.org/10.1111/j.1365-2745.2010.01669.x CrossRefGoogle Scholar
  7. Bässler C, Hothorn T, Brandl R, Müller J (2013) Insects overshoot the expected upslope shift caused by climate warming. PLoS ONE.  https://doi.org/10.1371/journal.pone.0065842 PubMedPubMedCentralGoogle Scholar
  8. Bässler C, Ernst R, Cadotte M, Heibl C, Müller J (2014) Near-to-nature logging influences fungal community assembly processes in a temperate forest. J Appl Ecol 51:939–948.  https://doi.org/10.1111/1365-2664.12267 CrossRefGoogle Scholar
  9. Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Bradtka JH, Langbehn T, Werth S, Müller J (2016) Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39:689–698.  https://doi.org/10.1111/ecog.01789 CrossRefGoogle Scholar
  10. Binder M, Larsson K-H, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102:865–880CrossRefPubMedGoogle Scholar
  11. Bjørnstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70.  https://doi.org/10.1023/A:1009601932481 CrossRefGoogle Scholar
  12. Cadotte MMW, Cavender-bares J, Tilman D, Oakley THT (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695.  https://doi.org/10.1371/journal.pone.0005695 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087.  https://doi.org/10.1111/j.1365-2664.2011.02048.x CrossRefGoogle Scholar
  14. Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol Lett 16:1234–1244.  https://doi.org/10.1111/ele.12161 CrossRefPubMedGoogle Scholar
  15. Cadotte MW, Jonathan Davies T, Peres-Neto PR (2017) Why phylogenies do not always predict ecological differences. Ecol Monogr 87:535–551.  https://doi.org/10.1002/ecm.1267 CrossRefGoogle Scholar
  16. Cisneros LM, Fagan ME, Willig MR (2015) Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Divers Distrib 21:523–533.  https://doi.org/10.1111/ddi.12277 CrossRefGoogle Scholar
  17. Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc R Soc B Biol Sci 273:2257–2266.  https://doi.org/10.1098/rspb.2006.3545 CrossRefGoogle Scholar
  18. Dehling DM, Fritz SA, Töpfer T, Päckert M, Estler P, Böhning-Gaese K, Schleuning M (2014) Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37:1047–1055.  https://doi.org/10.1111/ecog.00623 Google Scholar
  19. Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N, Letters E (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040.  https://doi.org/10.1111/j.1461-0248.2010.01493.x PubMedGoogle Scholar
  20. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655.  https://doi.org/10.1016/S0169-5347(01)02283-2 CrossRefGoogle Scholar
  21. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10.  https://doi.org/10.1016/0006-3207(92)91201-3 CrossRefGoogle Scholar
  23. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, John F St, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719.  https://doi.org/10.1126/science.1221748 CrossRefPubMedGoogle Scholar
  24. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227.  https://doi.org/10.1038/35012228 CrossRefPubMedGoogle Scholar
  25. Gaston KJ, Fuller RA (2008) Commonness, population depletion and conservation biology. Trends Ecol Evol 23:14–19.  https://doi.org/10.1016/j.tree.2007.11.001 CrossRefPubMedGoogle Scholar
  26. Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614.  https://doi.org/10.1111/cobi.12023 CrossRefPubMedGoogle Scholar
  27. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621.  https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 CrossRefGoogle Scholar
  28. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871.  https://doi.org/10.2307/2528823 CrossRefGoogle Scholar
  29. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150507 CrossRefGoogle Scholar
  30. Heck KL, van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461.  https://doi.org/10.2307/1934716 CrossRefGoogle Scholar
  31. Heikkala O, Seibold S, Koivula M, Martikainen P, Müller J, Thorn S, Kouki J (2016) Retention forestry and prescribed burning result in functionally different saproxylic beetle assemblages than clear-cutting. For Ecol Manag 359:51–58.  https://doi.org/10.1016/j.foreco.2015.09.043 CrossRefGoogle Scholar
  32. Heilmann-Clausen J, Christensen M (2004) Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manag 201:105–117.  https://doi.org/10.1016/j.foreco.2004.07.010 CrossRefGoogle Scholar
  33. Heilmann-Clausen J, Aude E, van Dort K, Christensen M, Piltaver A, Veerkamp M, Walleyn R, Siller I, Standovár T, Òdor P (2014) Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe—reflecting substrate quality or shaped by climate and forest conditions? J Biogeogr 41:2269–2282.  https://doi.org/10.1111/jbi.12388 CrossRefGoogle Scholar
  34. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon F, Eriksson OE, Huhndorf S, James T, Kirk PM, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Bauer R, Begerow D, Benny GL, Lisa A, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kurtzman CP, Larsson K-H, Lichtwardt R, Mia J, Mozley-Standridge S, Oberwinkler F, Parmasto E, Sampaio P, Rogers JD, Roux C, Ryvarden L, Sugiyama J, Thorn RG, Tibell L, Wendy A, Walker C, Wang Z, Weir A, Weiss M, Cannon PF, Lücking R, Lumbsch TH, Lutzoni F, Aptroot A, Castlebury LA, Gueidan C, Hawksworth DL, Hestmark G, Koljalg U, Longcore J, Miadlikowska J, Miller A, Moncalvo J-M, Reeb V, Sampaio JP, Schüßler A, Untereiner WA, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547.  https://doi.org/10.1016/j.mycres.2007.03.004 CrossRefPubMedGoogle Scholar
  35. Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gomez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916.  https://doi.org/10.1126/science.1146954 CrossRefPubMedGoogle Scholar
  36. Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518.  https://doi.org/10.1093/nar/gki198 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Krah F-S, Seibold S, Brandl R, Baldrian P, Müller J, Bässler C (2018) Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol 106:1428–1442.  https://doi.org/10.1111/1365-2745.12939 CrossRefGoogle Scholar
  38. Kuhn TS, Mooers A, Thomas GH (2011) A simple polytomy resolver for dated phylogenies. Methods Ecol Evol 2:427–436.  https://doi.org/10.1111/j.2041-210X.2011.00103.x CrossRefGoogle Scholar
  39. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24.  https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2 CrossRefGoogle Scholar
  40. Lindhe A, Lindelöw Å, Åsenblad N (2005) Saproxylic beetles in standing dead wood density in relation to substrate sun-exposure and diameter. Biodivers Conserv 14:3033–3053.  https://doi.org/10.1007/s10531-004-0314-y CrossRefGoogle Scholar
  41. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093.  https://doi.org/10.1111/j.1461-0248.2010.01509.x CrossRefPubMedGoogle Scholar
  42. Mouillot D, Graham NAJJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177.  https://doi.org/10.1016/j.tree.2012.10.004 CrossRefPubMedGoogle Scholar
  43. Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992.  https://doi.org/10.1007/s10342-010-0400-5 CrossRefGoogle Scholar
  44. Müller J, Noss RF, Bussler H, Brandl R (2010) Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol Conserv 143:2559–2569.  https://doi.org/10.1016/j.biocon.2010.06.024 CrossRefGoogle Scholar
  45. Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2014) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162.  https://doi.org/10.1111/acv.12075 CrossRefGoogle Scholar
  46. Müller J, Brustel H, Brin A, Bussler H, Bouget C, Obermaier E, Heidinger IMM, Lachat T, Förster B, Horak J, Prochazka J, Köhler F, Larrieu L, Bense U, Isacsson G, Zapponi L, Gossner MM (2015) Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38:499–509.  https://doi.org/10.1111/ecog.00908 CrossRefGoogle Scholar
  47. Nordén J, Penttil R, Siitonen J, Tomppo E, Ovaskainen O, Nord J, Nordén J, Penttilä R (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101:701–712.  https://doi.org/10.1111/1365-2745.12085 CrossRefGoogle Scholar
  48. Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625.  https://doi.org/10.1525/bio.2010.60.8.7 CrossRefGoogle Scholar
  49. Penttilä R, Siitonen J, Kuusinen M (2004) Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv 117:271–283.  https://doi.org/10.1016/j.biocon.2003.12.007 CrossRefGoogle Scholar
  50. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625.  https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2 CrossRefPubMedGoogle Scholar
  51. Petchey OL, Gaston KJ (2002a) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411.  https://doi.org/10.1046/j.1461-0248.2002.00339.x CrossRefGoogle Scholar
  52. Petchey OL, Gaston KJ (2002b) Extinction and the loss of functional diversity. Proc Biol Sci 269:1721–1727.  https://doi.org/10.1098/rspb.2002.2073 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985.  https://doi.org/10.1111/j.1365-2656.2007.01271.x CrossRefPubMedGoogle Scholar
  54. Purahong W, Wubet T, Krüger D, Buscot F (2018) Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J 12:289–295.  https://doi.org/10.1038/ismej.2017.177 CrossRefGoogle Scholar
  55. Reymond A, Purcell J, Cherix D, Guisan A, Pellissier L (2013) Functional diversity decreases with temperature in high elevation ant fauna. Ecol Entomol 38:364–373.  https://doi.org/10.1111/een.12027 CrossRefGoogle Scholar
  56. Rinaldi AC, Comandini O, Kuyper TW (2007) Ectomycorrhizal fungal diversity: separating the wheat from the claff. Fungal Divers 33:1–45Google Scholar
  57. Schmidl J, Bußler H (2004) Ökologische Gilden xylobionter Käfer Deutschlands. Naturschutz und Landschaftsplan 36:202–218Google Scholar
  58. Schowalter T (2006) Insect ecology: an ecosystem approach. Elsevier, San DiegoGoogle Scholar
  59. Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, Ulyshen MD, Müller J (2015a) Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biol Conserv 191:139–149.  https://doi.org/10.1016/j.biocon.2015.06.006 CrossRefGoogle Scholar
  60. Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015b) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390.  https://doi.org/10.1111/cobi.12427 CrossRefPubMedGoogle Scholar
  61. Seibold S, Bässler C, Brandl R, Büche B, Szallies A, Thorn S, Ulyshen MD, Müller J (2016) Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol 53:934–943.  https://doi.org/10.1111/1365-2664.12607 CrossRefGoogle Scholar
  62. Sibly RM, Brown JH, Kodric-Brown A (eds) (2012) Metabolic ecology: a scaling approach. Wiley.  https://doi.org/10.1002/9781119968535
  63. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, Vries W De, Wit CA De, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855.  https://doi.org/10.1126/science.1259855 CrossRefPubMedGoogle Scholar
  65. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, OctavoCrossRefGoogle Scholar
  66. Sverdrup-Thygeson A, Birkemoe T (2009) What window traps can tell us: effect of placement, forest openness and beetle reproduction in retention trees. J Insect Conserv 13:183–191.  https://doi.org/10.1007/s10841-008-9141-x CrossRefGoogle Scholar
  67. Thorn S, Bässler C, Gottschalk T, Hothorn T, Bussler H, Raffa K, Müller J (2014) New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLoS ONE 9:e101757.  https://doi.org/10.1371/journal.pone.0101757 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thorn S, Bässler C, Svoboda M, Müller J (2017) Effects of natural disturbances and salvage logging on biodiversity—lessons from the Bohemian Forest. For Ecol Manag 388:113–119.  https://doi.org/10.1016/j.comnet.2006.11.031 CrossRefGoogle Scholar
  69. Thuiller W, Maiorano L, Mazel F, Guilhaumon F, Ficetola GF, Lavergne S, Renaud J, Roquet C, Mouillot D (2015) Conserving the functional and phylogenetic trees of life of European tetrapods. Philos Trans R Soc Lond B Biol Sci.  https://doi.org/10.1098/rstb.2014.0005 PubMedPubMedCentralGoogle Scholar
  70. Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301.  https://doi.org/10.1890/07-1206.1 CrossRefPubMedGoogle Scholar
  71. Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150448 CrossRefGoogle Scholar
  72. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100.  https://doi.org/10.1093/bioinformatics/btn358 CrossRefPubMedGoogle Scholar
  73. Wikars L-O, Sahlin E, Ranius T (2005) A comparison of three methods to estimate species richness of saproxylic beetles (Coleoptera) in logs and high stumps of Norway spruce. Can Entomol 137:304–324.  https://doi.org/10.4039/n04-104 CrossRefGoogle Scholar
  74. Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol 28:199–204.  https://doi.org/10.1016/j.tree.2012.10.015 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Field Station Fabrikschleichach, BiocenterUniversity of WürzburgRauhenebrachGermany
  2. 2.School of Life Sciences, Chair for Strategic Landscape Planning and ManagementTechnical University of MunichFreisingGermany
  3. 3.Bavarian Forest National ParkGrafenauGermany
  4. 4.Chair for Terrestrial EcologyTechnical University of MunichFreisingGermany

Personalised recommendations