Advertisement

Biodiversity and Conservation

, Volume 27, Issue 11, pp 2859–2875 | Cite as

Revisiting the Darwinian shortfall in biodiversity conservation

  • Leandro C. S. AssisEmail author
Original Paper

Abstract

Among the seven shortfalls of biodiversity knowledge, the one that makes direct reference to phylogenetic information is the Darwinian shortfall, which embraces three components: “(1) the lack of fully resolved phylogenies for most groups of organisms; (2) the limited knowledge of branch lengths and difficulties in absolute time calibrations; and (3) unknown evolutionary models linking those phylogenies to ecological traits and the life-history variation” (Diniz-Filho et al. in Trends Ecol Evol 28:689–694, 2013). In order to overcome them, Diniz-Filho et al. (Trends Ecol Evol 28:689–694, 2013) emphasized the need to know the problems relative to phylogeny reconstruction, but they did not provide a clear comprehension of these problems. In the present article, I aim to comment on these problems in the context of the five epistemic stages of phylogenetic analysis. These are: (1) taxon sampling; (2) evidence; (3) homology assessment; (4) optimization methods; and (5) hypotheses formulation. A brief review of these stages is necessary to comprehend how complex is the use of phylogenetic hypotheses in ecology and conservation. I also provide additional and balanced solutions in an attempt to overcome the evolutionary shortfall.

Keywords

Evolutionary distinctiveness Homology Phylogenetic diversity Phylogenetic hypotheses Taxon sampling 

Notes

Acknowledgements

I thank Andrew Brower, José A.F. Diniz-Filho, Joaquín Hortal, and an anonymous referee for providing helpful comments on early draft of this article. This does not imply they totally agree with me. I hope our points of view stimulate a critical reflection on the use phylogenetic hypotheses in ecology and conservation.

References

  1. Almeida AMR, Yockteng R, Specht CD (2015) Evolution of petaloidy in the Zingiberales: an assessment of the relationship between ultrastucture and gene expression patterns. Dev Dyn 244:1121–1132CrossRefGoogle Scholar
  2. Arthur W (2011) Evolution: a developmental approach. Wiley, OxfordGoogle Scholar
  3. Assis LCS (2009) Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25:528–544CrossRefGoogle Scholar
  4. Assis LCS (2014) Testing evolutionary hypotheses: from Willi Hennig to angiosperm phylogeny group. Cladistics 30:240–242CrossRefGoogle Scholar
  5. Assis LCS (2015) Homology assessment in parsimony and model-based analyses: two sides of the same coin. Cladistics 31:315–320CrossRefGoogle Scholar
  6. Assis LCS (2016) Semaphoronts: the elements of biological systematics. In: Williams D, Schmitt M, Wheeler Q (eds) The future of phylogenetic systematics: the legacy of Willi Hennig. Cambridge University Press, Cambridge, pp 213–229CrossRefGoogle Scholar
  7. Assis LCS (2017a) Patterns of character evolution in phylogenies. J Syst Evol 55:225–230CrossRefGoogle Scholar
  8. Assis LCS (2017b) The jazz of cladistics. Syst Biodivers 15:385–390CrossRefGoogle Scholar
  9. Assis LCS, Rieppel O (2011) Are monophyly and synapomorphy the same of different? Revisiting the role of morphology in phylogenetics. Cladistics 27:94–102CrossRefGoogle Scholar
  10. Britz R, Conway KW (2009) Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J Morph 270:389–412PubMedCrossRefGoogle Scholar
  11. Britz R, Conway KW, Rüber L (2014) Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool J Linn Soc 172:556–615Google Scholar
  12. Brower AVZ (2017) Statistical consistency and phylogenetic inference: a brief review. Cladistics.  https://doi.org/10.1111/cla.12216 CrossRefGoogle Scholar
  13. Burbrink FT, Chen X, Myers EA, Brandley MC, Pyron RA (2012) Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation. Proc R Soc B 279:4817–4826PubMedCrossRefGoogle Scholar
  14. Buzgo M, Soltis DE, Soltis PS, Ma H (2004) Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci 9:164–173PubMedCrossRefGoogle Scholar
  15. Bybee S, Zaspel JM, Beucke KA, Scott CH, Smith BW, Branham MA (2009) Are molecular data supplanting morphological data in modern phylogenetic studies? Syst Entomol 35:2–5CrossRefGoogle Scholar
  16. Cadotte MW, Davies TJ, Peres-Neto PR (2017) Why phylogenies do not always predict ecological differences? Ecol Monogr 87:535–551CrossRefGoogle Scholar
  17. Cernansky R (2017) The biodiversity revolution. Nature 546:22–124PubMedCrossRefGoogle Scholar
  18. Cracraft J (2005) Phylogeny and evo-devo: characters, homology, and the historical analysis of the evolution of development. Zoology 108:345–356PubMedCrossRefGoogle Scholar
  19. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the Tree of Life. Nat Rev Genet 6:361–375PubMedCrossRefGoogle Scholar
  20. De-Paula OC, Assis LCS, Ronse de Craene LP (2018) Unbuttoning the ancestral flower of angiosperms. Trends Plant Sci.  https://doi.org/10.1016/j.tplants.2018.05.006 PubMedCrossRefGoogle Scholar
  21. DeSalle R, Brower AVZ (1997) Process partitions, congruence and the independence of characters: inferring relationships among closely-related Hawaiian Drosophila from multiple gene regions. Syst Biol 46:751–764PubMedCrossRefGoogle Scholar
  22. Diniz-Filho JAF, Loyola RD, Raia P, Mooers AO, Bini LM (2013) Darwinian shortfalls in biodiversity conservation. Trends Ecol Evol 28:689–694PubMedCrossRefGoogle Scholar
  23. Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:S121–S153CrossRefGoogle Scholar
  24. Doyle JA, Endress PK (2011) Tracing the early evolutionary diversification of the angiosperm flower. In: Wanntorp L, Ronse De Craene L (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 88–119CrossRefGoogle Scholar
  25. Doyle JA, Donoghue MJ, Zimmer EA (1994) Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann Missouri Bot Gard 81:419–450CrossRefGoogle Scholar
  26. Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. In: Soltis DE, Soltis PS, Leebens-Mack J (eds) Advances in botanical research, vol 44. Developmental genetics of the flower. Academic Press, New York, pp 1–46Google Scholar
  27. Faith D (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  28. Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 7–36Google Scholar
  29. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc. Publishers, SunderlandGoogle Scholar
  30. Fenker J, Tedeschi LG, Pyron RA, Nogueira CC (2014) Phylogenetic diversity, habitat loss and conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias). Divers Distrib 20:1108–1119CrossRefGoogle Scholar
  31. Fenwick AM, Gutberlet RL Jr, Evans JA, Parkinson CL (2009) Morphological and molecular evidence for phylogeny and classification of South America pitvipers, genera Bothrops, Bothriopsis and Bothrocophias (Serpentes: Viperidae). Zool J Linn Soc 156:617–640CrossRefGoogle Scholar
  32. Forest F et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760PubMedCrossRefGoogle Scholar
  33. Franz NM (2014) Anatomy of a cladistic analysis. Cladistics 30:294–321CrossRefGoogle Scholar
  34. Garland T Jr, Díaz-Uriarte R (1999) Polytomies and phylogenetically independent contrasts: examination of the bounded degrees of freedom approach. Syst Biol 48:547–558PubMedCrossRefGoogle Scholar
  35. Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AVL, Brower AVZ (2015) An alternative, plant based time-tree implies conflicting dates for the diversification of Ithomiine butterflies (Lepidoptera: Nymphalidae: Danainae). Syst Biol 64:752–767PubMedCrossRefGoogle Scholar
  36. Gee H (2003) Evolution: ending incongruence. Nature 425:782PubMedCrossRefGoogle Scholar
  37. Goloboff PA, Torres A, Arias TS (2017) Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics.  https://doi.org/10.1111/cla.12205 CrossRefGoogle Scholar
  38. Grandcolas P, Deleporte P, Desutter-Grandcolas L, Daugeron C (2001) Phylogenetics and ecology: as many characters as possible should be included in cladistic analysis. Cladistics 17:104–110Google Scholar
  39. Graybeal A (1998) Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 47:9–17PubMedCrossRefGoogle Scholar
  40. Gumbs R, Gray CL, Wearn OR, Owen NR (2018) Tetrapods on the EDGE: overcoming data limitations to identify phylogenetic conservation priorities. PLoS ONE 13:e0194680PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hahn MW, Nakhleh L (2015) Irrational exuberance for resolved species trees. Evolution 70:7–17PubMedCrossRefGoogle Scholar
  42. Hall BK (ed) (1994) Homology: the hierarchical basis of comparative biology. Academic Press, San DiegoGoogle Scholar
  43. Havstad JC, Assis LCS, Rieppel O (2015) The semaphorontic view of homology. J Exp Zool Part B 324:578–587CrossRefGoogle Scholar
  44. Heath TA, Hedtke SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 46:239–257Google Scholar
  45. Hedges SB, Marin J, Sueski M, Paymer M, Kumar S (2015) Tree of life reveals clock-like speciation and diversification Mol. Biol Evol 32:835–845CrossRefGoogle Scholar
  46. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  47. Hortal J, Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549CrossRefGoogle Scholar
  48. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 3:e296CrossRefGoogle Scholar
  49. Jaramillo MA, Kramer EM (2007) The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci 168:61–72CrossRefGoogle Scholar
  50. Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jenner RA (2004) Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Syst Biol 53:333–342PubMedCrossRefGoogle Scholar
  52. Jetz W, Thomas GH, Joy JB, Redding DW, Hartmann K, Mooers AO (2014) Global distribution and conservation of evolutionary distinctness in birds. Curr Biol 24:919–930PubMedCrossRefGoogle Scholar
  53. Kelly S, Grenyer R, Scotland RW (2014) Phylogenetic trees do not reliably predict feature diversity. Divers Distrib 20:600–612CrossRefGoogle Scholar
  54. Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) Cladistics: the theory and practice of parsimony analysis. Oxford University Press, OxfordGoogle Scholar
  55. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships amongst Epicrates (Boidae, Serpentes). Syst Zool 38:7–25CrossRefGoogle Scholar
  56. Kuhn TS, Mooers A, Thomas GH (2011) A simple polytomy resolver for dated phylogenies. Methods Ecol Evol 2:427–436CrossRefGoogle Scholar
  57. Lamsdell JC, Congreve CR, Hopkins MJ, Krug AZ, Patzkowsky ME (2017) Phylogenetic paleoecology: three-thinking and ecology in deep time. Trends Ecol Evol 32:452–463PubMedCrossRefGoogle Scholar
  58. Lecointre G, Deleporte P (2005) Total evidence requires exclusion of phylogenetically misleading data. Zool Script 34:221–223CrossRefGoogle Scholar
  59. Lukoschek V, Keogh JS, Avise JC (2012) Evaluating fossil calibration for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol 61:22–43PubMedCrossRefGoogle Scholar
  60. Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536CrossRefGoogle Scholar
  61. Mayden RL, Chen WJ (2010) The world’s smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Mol Phylogen Evol 57:152–175CrossRefGoogle Scholar
  62. Mazel F, Mooers A, Riva GVD, Pennell MW (2017) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Syst Biol, Syst.  https://doi.org/10.1093/sysbio/syx054 CrossRefGoogle Scholar
  63. Misof B et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767PubMedCrossRefGoogle Scholar
  64. Morrison DA, Morgan MJ, Kelchner SA (2015) Molecular homology and multiple-sequence alignment: an analysis of concepts and practice. Aust Syst Bot 28:46–62CrossRefGoogle Scholar
  65. Müller GB (2003) Homology: the evolution of morphological organization. In: Müller GB, Newman SA (eds) Origination of organismal form: beyond the gene in developmental and evolutionary biology. The MIT Press, Cambridge, pp 51–69Google Scholar
  66. Nixon KC, Wheeler QD (1992) Measures of phylogenetic diversity. In: Novacek MJ, Wheeler QD (eds) Extinction and phylogeny. Columbia University Press, New York, p 216Google Scholar
  67. O’Reilly J, Puttick M, Parry L, Tanner A, Tarver J, Fleming J, Pisani D, Donoghue P (2016) Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol Lett 12:20160081PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625CrossRefGoogle Scholar
  69. Philippe H, Brinkmann H, Lavrov DV, Timothy D, Littlewood J, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:402CrossRefGoogle Scholar
  70. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573PubMedCrossRefGoogle Scholar
  71. Pyron RA (2014) Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Syst Biol 63:779–797PubMedCrossRefGoogle Scholar
  72. Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583PubMedCrossRefGoogle Scholar
  73. Reddy S et al (2017) Why do phylogenomics data sets yield conflicting trees? Data type influences the avian Tree of Life more than taxon sampling. Syst Biol 66:857–879PubMedCrossRefGoogle Scholar
  74. Remane A (1952) Die Grundlagen des naturlichen Systems der verleichenden Anatomie und der Phylogenetik. Geest und Portig K. G, LeipzigGoogle Scholar
  75. Ribeiro PL, Rapini A, Silva UCS, van den Berg C (2012) Using multiple analytical methods to improve phylogenetic hypotheses in Minaria (Apocynaceae). Mol Phylogenet Evol 65:915–925PubMedCrossRefGoogle Scholar
  76. Rieppel OC (1988) Fundamentals of comparative biology. Birkhäuser Verlag, BaselGoogle Scholar
  77. Rieppel O (2004) The language of systematics, and the philosophy of “total evidence”. Syst Biodivers 2:9–19CrossRefGoogle Scholar
  78. Rieppel O (2007) The performance of morphological characters in broad-scale phylogenetic analysis. Biol J Linn Soc 92:297–308CrossRefGoogle Scholar
  79. Rieppel O (2015) Book review: Wagner, G.P. 2014. Homology, genes, and evolutionary innovation. Princeton University Press, Princeton. J Zool Syst Evol Res 53:95CrossRefGoogle Scholar
  80. Rindal E, Brower AVZ (2011) Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27:331–334CrossRefGoogle Scholar
  81. Rokas A, Carroll SB (2006) Bushes in the Tree of Life. PLoS Biol 4:1899–1904CrossRefGoogle Scholar
  82. Rolland J et al (2012) Using phylogenies in conservation: new perspectives. Biol Lett 23:692–694CrossRefGoogle Scholar
  83. Ronse De Craene LP, Brockington SF (2013) Origin and evolution of petals in angiosperms. Plant Ecol Evol 146:5–25CrossRefGoogle Scholar
  84. Rosenberg MS, Kumar S (2001) Incomplete taxon sampling is not a problem for phylogenetic inference. Proc Nat Acad Sci USA 98:10751–10756PubMedCrossRefGoogle Scholar
  85. Sauquet H et al (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schuh RT, Brower AVZ (2009) Biological systematics: principles and applications. Cornell University Press, New YorkGoogle Scholar
  87. Scotland RW (2010) Deep homology: a view from systematics. BioEssays 32:438–449PubMedCrossRefGoogle Scholar
  88. Scotland RW (2011) What is parallelism? Evol Dev 3:214–227CrossRefGoogle Scholar
  89. Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548PubMedCrossRefGoogle Scholar
  90. Sereno P (2007) Logical basis for morphological characters in phylogenetics. Cladistics 23:565–587Google Scholar
  91. Shirley MH, Vliet KA, Carr AN, Austin JD (2014) Rigorous approach to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc B 281:20132483PubMedCrossRefGoogle Scholar
  92. Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:418–423Google Scholar
  93. Smith ND, Turner AH (2005) Morphology’s role in phylogeny reconstruction: perspectives from paleontology. Syst Biol 54:166–173PubMedCrossRefGoogle Scholar
  94. Spencer M, Susko E, Roger AJ (2005) Likelihood, parsimony, and heterogeneous evolution. Mol Biol Evol 22:1161–1164PubMedCrossRefGoogle Scholar
  95. Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tucker CM et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715PubMedCrossRefGoogle Scholar
  97. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254CrossRefGoogle Scholar
  98. Vogt L (2017) Assessing similarity: on homology, characters and the need for a semantic approach to non-evolutionary comparative homology. Cladistics 33:513–539CrossRefGoogle Scholar
  99. Wägele JW, Letsch H, Klussmann-Kolb A, Mayer C, Misof B, Wägele H (2009) Phylogenetic support values are not necessarily informative: the case of the Serialia hypothesis (a mollusk phylogeny). Front Zool 6:1–15CrossRefGoogle Scholar
  100. Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, PrincetonCrossRefGoogle Scholar
  101. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–500CrossRefGoogle Scholar
  102. Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol 52:528–538PubMedCrossRefGoogle Scholar
  103. Wiens JJ (2004) The role of morphological data in phylogeny reconstruction: a reply to Scotland et al. (2003). Syst Biol 53:653–661PubMedCrossRefGoogle Scholar
  104. Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204PubMedCrossRefGoogle Scholar
  105. Wright A, Hillis D (2014) Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations