Advertisement

Biodiversity and Conservation

, Volume 27, Issue 10, pp 2587–2603 | Cite as

The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands

  • G. Wilson Fernandes
  • N. P. U. Barbosa
  • B. Alberton
  • A. Barbieri
  • R. Dirzo
  • F. Goulart
  • T. J. Guerra
  • L. P. C. Morellato
  • R. R. C. Solar
Original Paper

Abstract

Rupestrian grasslands are biodiverse, evolutionary old vegetation complexes that harbor more than 5000 species of vascular plants and one of the highest levels of plant endemism in the world. Growing on nutrient–impoverished soils and under harsh environmental conditions, these mountaintop ecosystems were once spared from major human interventions of agriculture and intensive cattle ranching. However, in Brazil, rupestrian grasslands have experienced one of the most extreme land use changes among all Brazilian ecosystems, suffering from ill policies leading to intense mining activities, uncontrolled tourism, and unplanned road construction. Indeed, the discovery of large mineral reserves, the adoption of ineffective conservation policies, and, going forward, climate change, are threatening this hyper-diverse ecosystem. Here, we shed light on the severe threats imposed by land-use changes in this ecosystem, modeling its future distribution under different scenarios. We uncover a catastrophic forecast that, if not halted, will lead to the loss of 82% of this unique ecosystem in the future, impacting ecosystem services at regional scales, including water and food security potentially affecting more than 50 million persons.

Keywords

Biodiversity Campo rupestre Cerrado Espinhaço mountains Mining Sustainability 

Notes

Acknowledgements

We thank the Conselho Nacional de Pesquisas (CNPq) for funding the Long-Term Ecological Research (PELD-CRSC-17), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), PPBio/MCTIC, PRPq/UFMG and Neotropical Grassland Conservation (NGC) for financial support. We are also grateful to the Company Cedro Têxtil, Reserva Vellozia, Parque Nacional da Serra do Cipó, GSG and Pousada Serra Morena for logistical support. NPUB received a CNPq-PDJ scholarship (154664/2016-2), FFG, TJG received a CNPq-PNPD scholarship, BA received a PhD scholarship from FAPESP (Grant #2014/0215-0), RD was supported by Stanford University unrestricted funds, and LPCM was supported by FAPESP (Grant #2013/50155-0). RS received support from PRPq/UFMG 005/2016. AFB received support from Rede Clima (FINEP/CNPq). LPCM and GWF received a research productivity fellowship from CNPq.

Supplementary material

10531_2018_1556_MOESM1_ESM.tif (35.8 mb)
Supplementary material 1 (TIFF 36636 kb). Some recently described species from rupestrian grasslands. Cinclodes espinhacensis Freitas, Chaves, Costa, Santos & Rodrigues, 2012 (Photo credits: G Freitas) (A); Pterinopelma sazimai Bertani, Nagahama and Fukushima 2011 (Photo credits: CS Fukushima) (B); Timorus sarcophagoides Vanin and Guerra 2012 (Photo credits: TJ Guerra) (C); Philcoxia minensis Souza and Guil. (Photo credits: RS Oliveira) (D) Nematodes trapped on the underground leaves of the carnivorous plant P. minensis (Photo credits: RS Oliveira) (E) and Paepalanthus bromelioides Silveira (Photo credits: TJ Guerra) (F).
10531_2018_1556_MOESM2_ESM.docx (43 kb)
Supplementary material 2 (DOCX 34 kb)
10531_2018_1556_MOESM3_ESM.docx (22 kb)
Supplementary material 3 (DOCX 20 kb)
10531_2018_1556_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 13 kb)

References

  1. Alberton B, Torres RS, Cancian LF, Borges BD, Almeida J, Mariano G, Morellato LPC (2017) Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation. Perspect Ecol Conserv.  https://doi.org/10.1016/j.pecon.2017.06.004 Google Scholar
  2. Alvarado ST, Fornazari T, Costola A, Morellato LPC, Silva TSF (2017) Drivers of fire occurrence in a mountainous Brazilian savanna: tracking long-term fire regimes using remote sensing. Ecol Indic.  https://doi.org/10.1016/j.ecolind.2017.02.037 Google Scholar
  3. Alves CBM, Leal CG, Brito MFG, Santos ACA (2008) Biodiversidade e conservação de peixes do Complexo do Espinhaço. Megadiversidade 4:177–196Google Scholar
  4. Alves RJV, Silva NG, Oliveira JA, Medeiros D (2014) Circumscribing campo rupestre: megadiverse Brazilian rocky montane savannas. Braz J Biol.  https://doi.org/10.1590/1519-6984.23212 Google Scholar
  5. Ambrizzi T, Araujo M (2014) Base científica das mudanças climáticas—Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas. COPPE/UFRJ, Rio de JaneiroGoogle Scholar
  6. Barbosa NPU, Fernandes GW (2016) Rupestrian grassland: past, present and future distribution. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 531–544CrossRefGoogle Scholar
  7. Barbosa NPU, Fernandes GW, Carneiro MAA, Júnior LAC (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of south-eastern Brazil (rupestrian fields). Biol Invasions.  https://doi.org/10.1007/s10530-010-9767-y Google Scholar
  8. Barbosa NPU, Fernandes GW, Sanchez-Azofeifa A (2015) A relict species restricted to a quartzitic mountain in tropical America: an example of microrefugium? Acta Bot Bras.  https://doi.org/10.1590/0102-33062014abb3731 Google Scholar
  9. Biénabe E, Hearne RR (2006) Public preferences for biodiversity conservation and scenic beauty within a framework of environmental services payments. For Pol Econ.  https://doi.org/10.1016/j.forpol.2005.10.002 Google Scholar
  10. Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol.  https://doi.org/10.1016/j.tree.2005.04.025 PubMedGoogle Scholar
  11. Carnaval AC, Moritz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr.  https://doi.org/10.1111/j.1365-2699.2007.01870.x Google Scholar
  12. Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol.  https://doi.org/10.1016/j.apsoil.2011.10.001 Google Scholar
  13. Chaves AV, Freitas GHS, Vasconcelos MF, Santos FR (2015) Biogeographic patterns, origin and speciation of the endemic birds from eastern Brazilian mountaintops: a review. Syst Biodivers.  https://doi.org/10.1080/14772000.2014.972477 Google Scholar
  14. Coutinho ES, Fernandes GW, Berbara RL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza.  https://doi.org/10.1007/s00572-015-0636-5 PubMedGoogle Scholar
  15. Dirzo R, Young HR, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science.  https://doi.org/10.1126/science.1251817 PubMedGoogle Scholar
  16. Durán AP, Rauch J, Gaston KJ (2013) Global spatial coincidence between protected areas and metal mining activities. Biol Conserv.  https://doi.org/10.1016/j.biocon.2013.02.003 Google Scholar
  17. Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço range in Minas Gerais, Brazil. Flora.  https://doi.org/10.1016/j.flora.2011.04.003 Google Scholar
  18. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib.  https://doi.org/10.1111/j.1472-4642.2010.00725.x Google Scholar
  19. Epps CW, Palsbøll PJ, Wehausen JD, Roderick GK, McCullough DR (2006) Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol Ecol.  https://doi.org/10.1111/j.1365-294X.2006.03103.x PubMedGoogle Scholar
  20. Fernandes GW (2016a) Ecology and conservation of mountaintop grasslands in Brazil. Springer, SwitzerlandCrossRefGoogle Scholar
  21. Fernandes GW (2016b) The shady future of the rupestrian grassland: major threats to conservation and challenges in the Anthropocene. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 545–561CrossRefGoogle Scholar
  22. Fernandes GW (2016c) The megadiverse rupestrian grassland. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 3–14CrossRefGoogle Scholar
  23. Fernandes GW, Ribeiro SP (2017) Deadly conflicts: mining, people, and conservation. Perspect Ecol Conserv.  https://doi.org/10.1016/j.pecon.2017.09.002 Google Scholar
  24. Fernandes GW, Santos JC (2014) Neotropical insect galls. Springer, NetherlandsCrossRefGoogle Scholar
  25. Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Conserv.  https://doi.org/10.1016/j.ncon.2014.08.003 Google Scholar
  26. Fernandes GW, Santos R, Barbosa NPU, Almeida HA, Carvalho V, Angrisano P (2015) Ocorrência de plantas não nativas e exóticas em áreas restauradas de campos rupestres. Planta Daninha.  https://doi.org/10.1590/S0100-83582015000300009 Google Scholar
  27. Fernandes GW, Pedroni F, Sanchez M, Scariot A, Aguiar LMS, Ferreira G, Machado R, Ferreira ME, Pinheiro SDR, Costa JAS, Dirzo R, Muniz F (2016a) Cerrado: Em Busca de Soluções Sustentáveis. Vertente, Rio de JaneiroGoogle Scholar
  28. Fernandes GW, Coelho MS, Machado RB, Ferreira ME, de Souza Aguiar LM, Dirzo R, Scariot A, Lopes CR (2016b) Afforestation of savannas: an impending ecological disaster. Nat Conserv.  https://doi.org/10.1016/j.ncon.2016.08.002 Google Scholar
  29. Figueira JEC, Ribeiro KT, Ribeiro MC, Jacobi CM, França H, Neves ACO, Conceição AA, Mourão FA, Souza JM, Miranda CAK (2016) Fire in rupestrian grasslands: plant response and management. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 415–448CrossRefGoogle Scholar
  30. Freitas GHS, Chaves AV, Costa LM, Santos FR, Rodrigues M (2012) A new species of Cinclodes from the Espinhaço Range, southeastern Brazil: insights into the biogeographical history of the South American highlands. Ibis.  https://doi.org/10.1111/j.1474-919X.2012.01268.x Google Scholar
  31. Garcia RA, Cabeza M, Altwegg R, Araújo MB (2016) Do projections from bioclimatic envelope models and climate change metrics match? Glob Ecol Biogeogr.  https://doi.org/10.1111/geb.12386 Google Scholar
  32. Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Micol L, Walker NF (2015) Brazil’s soy moratorium. Science.  https://doi.org/10.1126/science.aaa0181 PubMedGoogle Scholar
  33. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for their conservation. WWF/IUCN, Cambridge, pp 397–404Google Scholar
  34. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography.  https://doi.org/10.1111/j.0906-7590.2006.04700.x Google Scholar
  35. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  36. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer, LA (eds)]. IPCC, GenevaGoogle Scholar
  37. Khanum R, Mumtaz AS, Kumar S (2013) Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol.  https://doi.org/10.1016/j.actao.2013.02.007 Google Scholar
  38. Le Stradic S, Buisson E, Negreiros D, Campagne P, Fernandes GW (2014) The role of native woody species in the restoration of campos rupestres in quarries. Appl Veg Sci.  https://doi.org/10.1111/avsc.12058 Google Scholar
  39. Leite FSF, Juncá FA, Eterovick PC (2008) Status do conhecimento, endemismo e conservação de anfíbios anuros da Cadeia do Espinhaço, Brasil. Megadiversidade 4:182–200Google Scholar
  40. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography.  https://doi.org/10.1111/j.0906-7590.2005.03957.x Google Scholar
  41. Lüttge U (2017) Die erkundung der vegetation Brasiliens im 19. Jahrhundert. Hoppea Denkschr Regensb Bot Ges 78:23–44Google Scholar
  42. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  43. Monteiro L, Machado N, Martins E, Pougy N, Verdi M, Martinelli G, Loyola RD (2018) Conservation priorities for the threatened flora of mountaintop grasslands in Brazil. Flora 238:234–243.  https://doi.org/10.1016/j.flora.2017.03.007 CrossRefGoogle Scholar
  44. Morellato LPC, Silveira FAO (2018) Plant life on campo rupestre: new lessons from an ancient biodiversity hotspot. Flora 238:1–10.  https://doi.org/10.1016/j.flora.2017.12.001 CrossRefGoogle Scholar
  45. Mügge FLB, Paula-Souza J, Melo JC, Brandão MGL (2016) Native plant species with economic value from Minas Gerais and Goiás: a discussion on the currentness of the data recovered by the French naturalist Auguste de Saint-Hilaire. Hortic Bras 34:455–462.  https://doi.org/10.1590/s0102-053620160402 CrossRefGoogle Scholar
  46. Negreiros D, Le Stradic S, Fernandes GW, Rennó HC (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol.  https://doi.org/10.1007/s11258-014-0302-6 Google Scholar
  47. Neves ACO, Barbieri AF, Pacheco AA, Resende FM, Braga RF, Azevedo AA, Fernandes GW (2016) The human dimension in the Espinhaço Mountains: land conversion and ecosystem services. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 501–530CrossRefGoogle Scholar
  48. Nishi AH, Vasconcellos-Neto J, Romero GQ (2013) The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann Bot.  https://doi.org/10.1093/aob/mcs242 PubMedGoogle Scholar
  49. Oliveira RS, Abrahão A, Pereira C, Teodoro GS, Brum M, Alcantara S, Lambers H (2016) Ecophysiology of campos rupestres plants. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 227–272CrossRefGoogle Scholar
  50. Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Ganade G, Gossner MM, Guadagnin DL, Lorenzen K, Jacobi CM, Weisser WW, Pillar VD (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib.  https://doi.org/10.1111/ddi.12380 Google Scholar
  51. Pardiñas UFJ, Lessa G, Teta P, Salazar-Bravo J, Câmara EMVC (2014) A new genus of Sigmodontine rodent from eastern Brazil and the origin of the tribe Phyllotini. J Mammal.  https://doi.org/10.1644/13-MAMM-A-208 Google Scholar
  52. Pena JCC, Goulart F, Fernandes GW, Hoffmann D, Leite FSF, Santos NB, Soares-Filho B, Sobral-Souza T, Vancine MH, Rodrigues M (2017) Impacts of mining activities on the potential geographic distribution of eastern Brazil mountaintop endemic species. Perspect Ecol Conserv.  https://doi.org/10.1016/j.pecon.2017.07.005 Google Scholar
  53. Pereira CG, Almenara DP, Winter CE, Fritsch PW, Lambers H, Oliveira RS (2012) Underground leaves of Philcoxia trap and digest nematodes. PNAS.  https://doi.org/10.1073/pnas.1114199109 Google Scholar
  54. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 Google Scholar
  55. Resende F, Fernandes GW (2013) Economic valuation of plant diversity storage service provided by Brazilian rupestrian grassland ecosystems. Braz J Biol.  https://doi.org/10.1590/S1519-69842013000400005 Google Scholar
  56. Resende F, Fernandes GW, Andrade DC, Néder HD (2017) Economic valuation of the ecosystem services provided by a protected area in the Brazilian Cerrado: application of the contingent valuation method. Braz J Biol.  https://doi.org/10.1590/1519-6984.21215 PubMedGoogle Scholar
  57. Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M (2011) Caatinga: the scientific negligence experienced by a dry tropical forest. Trop Conserv Sci.  https://doi.org/10.1177/194008291100400306 Google Scholar
  58. Schaefer CEGR, Corrêa GR, Candido HG, Arruda DM, Nunes JA, Araujo RW, Rodrigues PMS, Filho EIF, Pereira AFS, Brandão PC, Neri AV (2016) The physical environment of rupestrian grasslands (campos rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: Fernandes GW (ed) Ecology and conservation of mountain top grasslands in Brazil. Springer, Switzerland, pp 15–53CrossRefGoogle Scholar
  59. Schrag M, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on treeline conifer distribution in the Greater Yellowstone ecosystem: implications for species of conservation concern. J Biogeogr.  https://doi.org/10.1111/j.1365-2699.2007.01815.x Google Scholar
  60. Silva JA, Machado RB, Azevedo AA, Drumond GM, Fonseca RL, Goulart MF, Júnior EAM, Martins CS, Neto MBR (2008) Identificação de áreas insubstituíveis para conservação da Cadeia do Espinhaço, estados de Minas Gerais e Bahia, Brasil. Megadiversidade 4:248–270Google Scholar
  61. Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil.  https://doi.org/10.1007/s11104-015-2637-8 Google Scholar
  62. Sonter LJ, Moran CJ, Barrett DJ, Soares-Filho BS (2014a) Processes of land use change in mining regions. J Clean Prod.  https://doi.org/10.1016/j.jclepro.2014.03.084 Google Scholar
  63. Sonter LJ, Barrett DJ, Soares-Filho BS (2014b) Offsetting the impacts of mining to achieve no net loss of native vegetation. Conserv Biol.  https://doi.org/10.1111/cobi.12260 PubMedGoogle Scholar
  64. Spehn EM, Rudmann-Maurer K, Körner C, Maselli D (2010) Mountain biodiversity and global change. GMBA-DIVERSITAS, BaselGoogle Scholar
  65. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefPubMedGoogle Scholar
  66. Vasconcelos MF, Lopes LE, Machado CG, Rodrigues M (2008) As aves dos campos rupestres da Cadeia do Espinhaço: diversidade, endemismo e conservação. Megadiversidade 4:221–241Google Scholar
  67. Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience.  https://doi.org/10.1093/biosci/biv118 Google Scholar
  68. Warming E (1892) Lagoa Santa: et Bidrag til den biologiske Plantegeografi: med en Fortegnelse over Lagoa Santas Hvirveldyr. Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, 6. Rk. 6:153–488Google Scholar
  69. Warming E (1895) Plantesamfund—Grundtræk af den økologiske Plantegeografi. P.G. Philipsens Forlag, KjøbenhavnGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • G. Wilson Fernandes
    • 1
    • 2
  • N. P. U. Barbosa
    • 1
  • B. Alberton
    • 3
  • A. Barbieri
    • 4
  • R. Dirzo
    • 2
  • F. Goulart
    • 5
    • 6
  • T. J. Guerra
    • 7
  • L. P. C. Morellato
    • 3
  • R. R. C. Solar
    • 1
  1. 1.Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of BiologyStanford UniversityStanfordUSA
  3. 3.Laboratório de Fenologia, Departamento de Botânica, Instituto de BiociênciasUniversidade Estadual Paulista UNESPRio ClaroBrazil
  4. 4.Departamento de DemografiaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  6. 6.Instituto de Geociências, Pós-Graduação em Análise e Modelagem de Sistemas AmbientaisUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  7. 7.Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations