Advertisement

Biodiversity and Conservation

, Volume 27, Issue 9, pp 2311–2328 | Cite as

Simple pond restoration measures increase dragonfly (Insecta: Odonata) diversity

  • Alina Janssen
  • Holger Hunger
  • Werner Konold
  • Gesine Pufal
  • Michael Staab
Original Paper

Abstract

Ponds are home to a diverse community of specialized plants and animals and are hence of great conservation concern. Through land-use changes, ponds have been disappearing rapidly and remaining ponds are often threatened by contamination and eutrophication, with negative consequences for pond-dependent taxa like amphibians or dragonflies (Odonata: Anisoptera and Zygoptera). Increasingly, restoration measures such as removal of shading terrestrial vegetation or submerged organic matter are implemented to counteract current threats, but how these measures affect the target taxa is rarely assessed. We tested if and how simple pond restoration measures affectionate diversity. We propose that pond restoration influences the light regime, which promotes aquatic and riparian vegetation important for different dragonfly life stages, thus increasing their diversity. Additionally, we assume that this changes dragonfly species composition between restored and unrestored ponds. We surveyed exuviae in the riparian and aquatic vegetation along the shore of 29 (12 restored, 17 unrestored) man-made ponds in southwest Germany and assessed environmental variables known to affect dragonfly diversity. We identified the cover of tall sedges and submerged macrophytes as the driving biotic variables for dragonfly diversity and species composition, with restoration measures affecting submerged macrophyte cover directly but tall sedges indirectly via available sunlight. This study demonstrates that simple restoration measures not only have a positive effect on overall dragonfly diversity, but also increase habitat suitability for several species that would otherwise be absent. We therefore propose dragonflies as a suitable flagship group for pond conservation.

Keywords

Aquatic vegetation Conservation Damselfly Habitat management Light regime Reconciliation 

Notes

Acknowledgements

We would like to thank Regierungspräsidium Freiburg, Referat 56 for partial funding of the study and issuing special permits.

Supplementary material

10531_2018_1539_MOESM1_ESM.pdf (34 kb)
Supplementary material 1 (PDF 34 kb)
10531_2018_1539_MOESM2_ESM.pdf (6.4 mb)
Supplementary material 2 (PDF 6570 kb)

References

  1. Arntzen JW, Abrahams C, Meilink WRM, Iosif R, Zuiderwijk A (2017) Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodivers Conserv 26(6):1411–1430.  https://doi.org/10.1007/s10531-017-1307-y CrossRefGoogle Scholar
  2. Barton K (2015) Multi Model Interference: R Package ‘MuMIn’Google Scholar
  3. Batzer DP, Palik BJ, Buech R (2003) Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. J N Am Benthol Soc 23:50–68CrossRefGoogle Scholar
  4. Bernáth B, Szedenics G, Wildermuth H, Horváth G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biol 47(9):1707–1719.  https://doi.org/10.1046/j.1365-2427.2002.00931.x CrossRefGoogle Scholar
  5. Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005) 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conserv: Mar Freshw Ecosyst 15(6):693–714.  https://doi.org/10.1002/aqc.745 CrossRefGoogle Scholar
  6. Boix D, Biggs J, Céréghino R, Hull AP, Kalettka T, Oertli B (2012) Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia 689(1):1–9.  https://doi.org/10.1007/s10750-012-1015-2 CrossRefGoogle Scholar
  7. Bried JT, Samways MJ (2015) A review of odonatology in freshwater applied ecology and conservation science. Freshwater Sci 34(3):1023–1031.  https://doi.org/10.1086/682174 CrossRefGoogle Scholar
  8. Bried JT, D’Amico F, Samways MJ (2012) A critique of the dragonfly delusion hypothesis: Why sampling exuviae does not avoid bias. Insect Conserv Divers 5:398–402.  https://doi.org/10.1111/j.1752-4598.2011.00171.x CrossRefGoogle Scholar
  9. Brochard C, Groenendijk D, van der Ploeg E, Termaat T (2002) Fotogids Larvenhuidjes van Libellen, 1st edn. Knnv, UitgeverijGoogle Scholar
  10. Brönmark C, Hansson L-A (1998) The biology of lakes and ponds. Oxford University Press, OxfordGoogle Scholar
  11. Brönmark C, Hansson L-A (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29(3):290–307.  https://doi.org/10.1017/S0376892902000218 CrossRefGoogle Scholar
  12. Buchwald R (1992) Vegetation and dragonfly fauna: characteristics and examples of biocoenological field studies. Vegetatio 101(2):99–107.  https://doi.org/10.1007/BF00033195 Google Scholar
  13. Carchini G, Della Bella V, Solimini AG, Bazzanti M (2007) Relationships between the presence of odonate species and environmental characteristics in lowland ponds of central Italy. Ann Limnol 43(2):81–87.  https://doi.org/10.1051/limn/2007020 CrossRefGoogle Scholar
  14. Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814.  https://doi.org/10.1046/j.1523-1739.1999.98338.x CrossRefGoogle Scholar
  15. Céréghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597(1):1–6.  https://doi.org/10.1007/s10750-007-9225-8 CrossRefGoogle Scholar
  16. Céréghino R, Boix D, Cauchie H-M, Martens K, Oertli B (2014) The ecological role of ponds in a changing world. Hydrobiologia 723(1):1–6.  https://doi.org/10.1007/s10750-013-1719-y CrossRefGoogle Scholar
  17. Clausnitzer H-J (1993) Die Bedeutung temporärer Kleingewässer für gefährdete Arten. In: Gland D (ed) Mitteleuropäische Kleingewässer: Ökologie. Schutz, Management, Metelen, pp 41–45Google Scholar
  18. Clausnitzer V, Dijkstra K-DB, Koch R, Boudot J-P, Darwall WRT, Kipping J, Samraoui B, Samways MJ, Simaika JP, Suhling F (2012) Focus on African freshwaters: hotspots of dragonfly diversity and conservation concern. Front Ecol Environ 10:129–134.  https://doi.org/10.1890/110247 CrossRefGoogle Scholar
  19. Clausnitzer V, Simaika JP, Samways MJ, Daniel BA (2017) Dragonflies as flagships for sustainable use of water resources in environmental education. Appl Env Edu Comm.  https://doi.org/10.1080/1533015X.2017.1333050 Google Scholar
  20. Corbet PS (1999) Dragonflies: Behavior and ecology of Odonata. Harley Books, ColchesterGoogle Scholar
  21. Council of the European Union (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Europ Union 206:7–50Google Scholar
  22. Davies BR, Biggs J, Williams P, Lee JT, Thompson S (2008) A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597(1):7–17.  https://doi.org/10.1007/s10750-007-9227-6 CrossRefGoogle Scholar
  23. Davies SR, Sayer CD, Greaves H, Siriwardena GM, Axmacher JC (2016) A new role for pond management in farmland bird conservation. Agric Ecosyst Environ 233:179–191CrossRefGoogle Scholar
  24. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566–3574.  https://doi.org/10.1890/08-1823.1 CrossRefPubMedGoogle Scholar
  25. Dietz JM, Dietz AL, Nagagata EY (1994) The effective use of flagship species for conservation of biodiversity: the example of lion tamarins in Brazil. In: Olney PJS, Mace GM, Feistner ATC (eds) Creative conservation: interactive management of wild and captive animals. Chapman and Hall, London, pp 32–49CrossRefGoogle Scholar
  26. Dijkstra K-DB, Lewington R (2010) Field guide to the dragonflies of Britain and Europe: including Western Turkey and North-western Africa. British Wildlife Publishing, RotherwickGoogle Scholar
  27. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz Jaime R, García Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46.  https://doi.org/10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  28. Elkin Baker (2000) Lack of preference for low-predation-risk habitats in larval damselflies explained by costs of intraspecific interactions. Anim Behav 60(4):511–521.  https://doi.org/10.1006/anbe.2000.1513 CrossRefPubMedGoogle Scholar
  29. Ellenberg H (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn. Scripta Geobotanica, Band 18. Goltze, Göttingen, GermanyGoogle Scholar
  30. European Pond Conservation Network (2008) The pond manifesto. www.Freshwaterhabitats.org.uk/research/epcn Accessed 14 Aug 2017
  31. Ewald N, Kalettka T, Brendonck L (2012) Eyes of the landscape—Value, conservation and management of European ponds. Limnologica 42(4):251–253.  https://doi.org/10.1016/j.limno.2012.09.001 CrossRefGoogle Scholar
  32. Finke DL, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Conserv 143(10):2260–2269.  https://doi.org/10.1016/j.biocon.2010.03.022 CrossRefGoogle Scholar
  33. Foote LA, Hornung RCL (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecol Entomol 30(3):273–283.  https://doi.org/10.1111/j.0307-6946.2005.00701.x CrossRefGoogle Scholar
  34. Goertzen D, Suhling F (2013) Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. J Insect Conserv 17(2):399–409.  https://doi.org/10.1007/s10841-012-9522-z Google Scholar
  35. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24(4):699–711.  https://doi.org/10.1111/j.1420-9101.2010.02210.x CrossRefPubMedGoogle Scholar
  36. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49.  https://doi.org/10.1038/23876 CrossRefGoogle Scholar
  37. Harabiš F, Dolný A (2015) Odonates need natural disturbances: how human-induced dynamics affect the diversity of dragonfly assemblages. Freshw Sci 34(3):1050–1057.  https://doi.org/10.1086/682234 CrossRefGoogle Scholar
  38. Hawking JH, New TR (2002) Interpreting dragonfly diversity to aid in conservation assessment: lessons from the Odonata assemblage at Middle Creek, north-eastern Victoria, Australia. J Insect Conserv 6(3):171–178.  https://doi.org/10.1023/A:1023231325756 CrossRefGoogle Scholar
  39. Heidemann H, Seidenbusch R (2002) Die Libellenlarven Deutschlands: Handbuch für Exuviensammler. Die Tierwelt Deutschlands und der angrenzenden Meeresteile, Goecke & Evers, Keltern, GermanyGoogle Scholar
  40. Hilt S, Gross EM, Hupfer M, Morscheid H, Mählmann J, Melzer A, Poltz J, Sandrock S, Scharf E-M, Schneider S, van de Weyer K (2006) Restoration of submerged vegetation in shallow eutrophic lakes? A guideline and state of the art in Germany. Limnologica 36(3):155–171.  https://doi.org/10.1016/j.limno.2006.06.001 CrossRefGoogle Scholar
  41. Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restor Ecol 4(2):93–110.  https://doi.org/10.1111/j.1526-100X.1996.tb00112.x CrossRefGoogle Scholar
  42. Honkanen M, Sorjanen A-M, Mönkkönen M (2011) Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry. Oecologia 166(2):457–467.  https://doi.org/10.1007/s00442-010-1846-3 CrossRefPubMedGoogle Scholar
  43. Hunger H, Schiel F-J, Kunz B (2006) Verbreitung und Phänologie der Libellen Baden-Württembergs (Odonata). Libellula Supplement 7:15–188Google Scholar
  44. Johansson F (1991) Foraging modes in an assemblage of odonate larvae: effects of prey and interference. Hydrobiologia 209(1):79–87.  https://doi.org/10.1007/BF00006721 CrossRefGoogle Scholar
  45. Johnson DM (1991) Behavioral ecology of larval dragonflies and damselflies. Trends Ecol Evol 6(1):8–13.  https://doi.org/10.1016/0169-5347(91)90140-S CrossRefPubMedGoogle Scholar
  46. Jost L (2006) Entropy and diversity. Oikos 113:363–375.  https://doi.org/10.1111/j.2006.0030-1299.14714.x CrossRefGoogle Scholar
  47. Kadoya T, Suda S-I, Washitani I (2004) Dragonfly species richness on man-made ponds: effects of pond size and pond age on newly established assemblages. Ecol Res 19(5):461–467.  https://doi.org/10.1111/j.1440-1703.2004.00659.x CrossRefGoogle Scholar
  48. Lefcheck JS, Freckleton R (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7(5):573–579.  https://doi.org/10.1111/2041-210X.12512 CrossRefGoogle Scholar
  49. Lemelin RH (2007) Finding beauty in the dragon: the role of dragonflies in recreation and tourism. J Ecotourism 6(2):139–145.  https://doi.org/10.2167/joe161.0 CrossRefGoogle Scholar
  50. Linton S, Goulder R (2000) Botanical conservation value related to origin and management of ponds. Aquatic Conserv Mar Freshw Ecosyst 10(2):77–91.  https://doi.org/10.1002/(SICI)1099-0755(200003/04)
  51. Lischeid G, Kalettka T, Holländer M, Steidl J, Merz C, Dannowski R, Hohenbrink T, Lehr C, Onandia G, Reverey F, Pätzig M (2017) Natural ponds in an agricultural landscape: external drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica.  https://doi.org/10.1016/j.limno.2017.01.003 Google Scholar
  52. Mabry C, Dettmann C (2010) Odonata richness and abundance in relation to vegetation structure in restored and native wetlands of the prairie pothole region. USA. Ecol Restor 28(4):475–484CrossRefGoogle Scholar
  53. McCauley SJ (2006) The effects of dispersal and recruitment limitation on community structure of odonates in artificial ponds. Ecography 29(4):585–595.  https://doi.org/10.1111/j.0906-7590.2006.04787.x CrossRefGoogle Scholar
  54. McKinnon B, May ML (1994) Mating habitat choice and reproductive success of Pachydiplax longipennis (Burmeister) (Anisoptera: libellulidae). Adv Odonatol 6:59–77Google Scholar
  55. Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104(1):59–70.  https://doi.org/10.1016/S0006-3207(01)00154-9 CrossRefGoogle Scholar
  56. Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne J-B (2005) Conservation and monitoring of pond biodiversity: introduction. Aquatic Conserv Mar Freshw Ecosyst 15(6):535–540.  https://doi.org/10.1002/aqc.752 CrossRefGoogle Scholar
  57. Oertli B, Céréghino R, Hull A, Miracle R (2009) Pond conservation: from science to practice. Hydrobiologia 634(1):1–9.  https://doi.org/10.1007/s10750-009-9891-9 CrossRefGoogle Scholar
  58. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RBO, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology PackageGoogle Scholar
  59. Osborne R, Samways MJ (1996) Determinants of adult dragonfly assemblage patterns at new ponds in South Africa. Odonatologica 25(1):49–58Google Scholar
  60. Ott J, Conze K-J, Günther A, Lohr M, Mauersberger R, Roland HJ, Suhling F (2015) Rote Liste und Gesamtartenliste der Libellen Deutschlands: mit Analyse der Verantwortlichkeit. Libellula Supplement 14:395–422Google Scholar
  61. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290.  https://doi.org/10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  62. Pezalla VM (1979) Behavioral ecology of the dragonfly Libellula pulchella Drury (Odonata: Anisoptera). Am Midl Nat 102(1):1–22.  https://doi.org/10.2307/2425062 CrossRefGoogle Scholar
  63. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. University Press, CambridgeCrossRefGoogle Scholar
  64. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, AustriaGoogle Scholar
  65. Raebel EM, Merckx T, Riordan P, Macdonald DW, Thompson DJ (2010) The dragonfly delusion: why it is essential to sample exuviae to avoid biased surveys. J Insect Conserv 14(5):523–533.  https://doi.org/10.1007/s10841-010-9281-7 CrossRefGoogle Scholar
  66. Raebel EM, Merckx T, Feber RE, Riordan P, Macdonald DW, Thompson DJ (2012) Identifying high-quality pond habitats for Odonata in lowland England: implications for agri-environment schemes. Insect Conserv Divers 5(6):422–432.  https://doi.org/10.1111/j.1752-4598.2011.00178.x CrossRefGoogle Scholar
  67. Rebhan H, Albrecht S (1996) Kleingewässer in einer Karstlandschaft und ihre Bedeutung für den Naturschutz. Bayr ANL 20:229–238Google Scholar
  68. Remsburg AJ, Turner MG (2009) Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J North Am Benthol Soc 28(1):44–56.  https://doi.org/10.1899/08-004.1 CrossRefGoogle Scholar
  69. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43(1):95–120.  https://doi.org/10.2307/1942161 CrossRefGoogle Scholar
  70. Rouquette JR, Thompson DJ (2007) Roosting site selection in the endangered damselfly, Coenagrion mercuriale, and implications for habitat design. J Insect Conserv 11(2):187–193.  https://doi.org/10.1007/s10841-006-9030-0 CrossRefGoogle Scholar
  71. Sagrario G, Ángeles M de los, Balseiro E, Ituarte R, Spivak E (2009) Macrophytes as refuge or risky area for zooplankton: A balance set by littoral predacious macroinvertebrates. Freshwater Biol 54(5):1042–1053.  https://doi.org/10.1111/j.1365-2427.2008.02152.x
  72. Sahlén G, Ekestubbe K (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiv Conserv 10(5):673–690.  https://doi.org/10.1023/A:1016681524097 CrossRefGoogle Scholar
  73. Samways MJ (2008) Dragonflies as focal organisms in contemporary conservation biology. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies. Oxford University Press, Oxford, pp 97–108CrossRefGoogle Scholar
  74. Sayer C, Andrews K, Shilland E, Edmonds N, Edmonds-Brown R, Patmore I, Emson D, Axmacher J (2012) The role of pond management for biodiversity conservation in an agricultural landscape. Aquat Conserv: Mar Fresh Ecosyst 22(5):626–638CrossRefGoogle Scholar
  75. Schindler M, Fesl C, Chovanec A (2003) Dragonfly associations (Insecta: Odonata) in relation to habitat variables: a multivariate approach. Hydrobiologia 497(1/3):169–180.  https://doi.org/10.1023/A:1025476220081 CrossRefGoogle Scholar
  76. Schmude KL, Jennings MJ, Otis KJ, Piette RR (1998) Effects of habitat complexity on macroinvertebrate colonization of artificial substrates in north temperate lakes. J North Am Benthol Soc 17(1):73–80.  https://doi.org/10.2307/1468052 CrossRefGoogle Scholar
  77. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90(2):363–368.  https://doi.org/10.1890/08-1034.1 CrossRefPubMedGoogle Scholar
  78. Simaika JP, Samways MJ (2011) Comparative assessment of indices of freshwater habitat conditions using different invertebrate taxon sets. Ecol Indic 11(2):370–387.  https://doi.org/10.1016/j.ecolind.2010.06.005 CrossRefGoogle Scholar
  79. Sternberg K, Buchwald R (2000) Die Libellen Baden-Württembergs Band 2: Großlibellen (Anisoptera). Verlag Eugen Ulmer, Stuttgart, GermanyGoogle Scholar
  80. Suhling F, Sahlén G, Martens A, Marais E, Schütte C (2006) Dragonfly assemblages in arid tropical environments: a case study from western Namibia. Biodivers Conserv 15(1):311–332.  https://doi.org/10.1007/s10531-005-2007-6 CrossRefGoogle Scholar
  81. Usio N, Nakagawa M, Aoki T, Higuchi S, Kadono Y, Akasaka M, Takamura N (2017) Effects of land use on trophic states and multitaxonomic diversity in Japanese farm ponds. Agric Ecosyst Environ 247:205–215.  https://doi.org/10.1016/j.agee.2017.06.043 CrossRefGoogle Scholar
  82. van Buskirk J (1988) Interactive effects of dragonfly predation in experimentalpond communities. Ecology 69(3):857–867.  https://doi.org/10.2307/1941035 CrossRefGoogle Scholar
  83. Veríssimo D, MacMillan DC, Smith RJ (2011) Toward a systematic approach for identifying conservation flagships. Conserv Lett 4(1):1–8.  https://doi.org/10.1111/j.1755-263X.2010.00151.x CrossRefGoogle Scholar
  84. Werner EE, Skelly DK, Relyea RA, Yurewicz KL (2007) Amphibian species richness across environmental gradients. Oikos 116:1697–1712.  https://doi.org/10.1111/j.0030-1299.2007.15935.x CrossRefGoogle Scholar
  85. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85(6):297–302.  https://doi.org/10.1007/s001140050504 CrossRefGoogle Scholar
  86. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115(2):329–341.  https://doi.org/10.1016/S0006-3207(03)00153-8 CrossRefGoogle Scholar
  87. Williams P, Biggs J, Crow A, Murphy J, Nicolet P, Weatherby A, Dunbar M (2010) Countryside survey: ponds report from 2007. CS Technical Report No. 7/07Google Scholar
  88. Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50(3):296–302.  https://doi.org/10.1007/BF00344966 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nature Conservation and Landscape Ecology, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
  2. 2.INULA - Institut für Naturschutz Und LandschaftsanalyseFreiburgGermany
  3. 3.Landscape Management, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany

Personalised recommendations