Biodiversity and Conservation

, Volume 27, Issue 9, pp 2257–2274 | Cite as

Steeplebushes conquer the countryside: influence of invasive plant species on spider communities (Araneae) in former wet meadows

  • Birgit Balkenhol
  • Henning Haase
  • Petra Gebauer
  • Ricarda Lehmitz
Original Paper
Part of the following topical collections:
  1. Invasive species


Central European wet meadows are diminished by abandonment of cultivation measures, drainage, pollution, intensive agriculture and climate change during the last decades. In addition, original wet meadow communities can be threatened by immigrating neophytes. Typical invasive species in wet meadows are the steeplebushes Spiraea tomentosa and Spiraea douglasii, but their impact on the indigenous arthropod fauna is unknown. The present study therefore investigates Spiraea-induced changes in ground- and herb dwelling spiders in Spiraea sites, uncultivated meadows with interspersed Spiraea sp. and mowed meadows without Spiraea sp. using pitfall traps and sweep netting. Light intensity, vegetation height and coverage differed significantly between the Spiraea sites and the mowed meadows. In consequence, the activity density of ground-dwelling spiders was much lower in the Spiraea sites and their habitat preferences differed significantly from the two meadow types. Species preferring forests and forest edges were more abundant in invaded sites whereas specimens preferring open habitats decreased. Although the vegetation height and coverage of mowed meadows and cultivated meadows did not differ remarkably, uncultivated meadows contained less spiders of open dry habitats whereas forest species increased. In contrast, differences between herb dwelling spider assemblages of the three habitat types were not significant. Based on the results of the project, the risk of steeple bush invasion and management methods of wet meadows are discussed.


Spiraea tomentosa Spiraea douglasii Neophytes Vegetation structure Light intensity Central Europe 



We would like to thank the Administration of the Biosphere Reserve „Oberlausitzer Heide- und Teichlandschaft“, the National Forest Enterprise Lausitz and Mr. W. Marczycki for investigation approval and for the cooperation. We thank Waldemar Bena (Zgorzelec) for showing us several Spiraea sites in Poland and Ekkehard Mättig (Görlitz) for drawing the three habitat types in Fig. 4. We are further grateful to J.M.C. Hutchinson (Görlitz), K. Wesche (Görlitz), Björn Scholz-Starke and Jonas Hausen (Aachen) for discussions on statistical evaluation and the associate editor and three anonymous reviewers for helpful comments on this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10531_2018_1536_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 64 kb)
10531_2018_1536_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 25 kb)
10531_2018_1536_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 19 kb)
10531_2018_1536_MOESM4_ESM.docx (20 kb)
Supplementary material 4 (DOCX 21 kb)
10531_2018_1536_MOESM5_ESM.docx (19 kb)
Supplementary material 5 (DOCX 19 kb)


  1. Anton C, Musche M, Hula V, Settele J (2008) Myrmica host-ants limit the density of the ant-predatory large blue Maculinea nausithous. J Insect Conserv 12:511–517. CrossRefGoogle Scholar
  2. Balkenhol B, Hohberg K, Pfanz H (2016) Spiders in mofette fields—survival of the toughest in natural carbon dioxide springs? Ecol Indic 69:749–757. CrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. CrossRefGoogle Scholar
  4. Blaum N, Seymour C, Rossmanith E, Schwager M, Jeltsch F (2009) Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers Conserv 18:1187–1199. CrossRefGoogle Scholar
  5. Blick T, Scheidler M (1991) Kommentierte Artenliste der Spinnen Bayerns (Araneae). Arachnol Mitt 1:27–80.
  6. Blick T, Finch O-D, Harms KH, Kiechle J, Kielhorn K-H, Kreuels M, Malten A, Martin D, Muster C, Nährig D, Platen R, Rödel I, Scheidler M, Staudt A, Stumpf H, Tolke D (2016) Rote Liste und Gesamtartenliste der Spinnen (Arachnida: Araneae) Deutschlands. 3. Fassung, Naturschutz und Biologische Vielfalt 70/4:383–510Google Scholar
  7. Bruun LD, Toft S (2004) Epigeic spiders of two Danish peat bogs. In: Samu F, Szinetar C (eds) European arachnology 2002. Plant Protection Institute, Budapest, pp 285–302Google Scholar
  8. Buchholz S (2016) Natural peat bog remnants promote distinct spider assemblages and habitat specific traits. Ecol Indic 60:774–780. CrossRefGoogle Scholar
  9. Bultman TL, DeWitt DJ (2008) Effect of an invasive ground cover plant on the abundance and diversity of a forest floor spider assemblage. Biol Invasions 10:749–756. CrossRefGoogle Scholar
  10. Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D (2013) Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75:3–26. CrossRefGoogle Scholar
  11. Dajdok Z, Nowak A, Danielewicz W, Kujawa-Pawlaczyk J, Bena W (2011) NOBANIS—Invasive Alien Species Fact Sheet—Spiraea tomentosa. From: online database of the European Network on Invasive Alien Species—NOBANIS. Accessed 14 Feb 2017
  12. De Poorter M (2007) Invasive alien species and protected areas. A scoping report. Part I: scoping the scale and nature of invasive alien species threats to protected areas, impediments to IAS management and means to address those impediments.
  13. DeVore JL, Maerz JC (2014) Grass invasion increases top-down pressure on an amphibian via structurally mediated effects on an intraguild predator. Ecology 95:1724–1730CrossRefPubMedGoogle Scholar
  14. Dierschke H (1994) Pflanzensoziologie. Ulmer, Stuttgart, p 683Google Scholar
  15. Dinno A (2017) Dunn’s test of multiple comparisons using rank sums. R package version 1.3.5.
  16. Dudek K, Michlewicz M, Dudek M, Tryjanowski P (2016) Invasive Canadian goldenrod (Solidago canadensis L.) as a preferred foraging habitat for spiders. Arthropod Plant Interact 10(5):377–381. CrossRefGoogle Scholar
  17. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366.[0345:saaist];2 Google Scholar
  18. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. CrossRefGoogle Scholar
  19. Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448. CrossRefGoogle Scholar
  20. EPPO European and Mediterranean Plant Protection Organization (2017) EPPO lists of invasive alien plants. Accessed 8 Feb 2017
  21. Ernst C, Cappuccino NT (2005) The effect of an invasive alien vine, Vincetoxicum rossicum (Asclepiadaceae), on arthropod populations in Ontario old fields. Biol Invasions 7:417–425. CrossRefGoogle Scholar
  22. Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141:646–654. CrossRefGoogle Scholar
  23. Gratton C, Denno RF (2005) Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restor Ecol 13:358–372. CrossRefGoogle Scholar
  24. Haase H, Balkenhol B (2015) Spiders (Araneae) as subtle indicators for successional stages in peat bogs. Wetl Ecol Manag 23:453–466. CrossRefGoogle Scholar
  25. Habel JC, Dengler J, Janisová M, Török P, Wellstein C, Wiezi M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138. CrossRefGoogle Scholar
  26. Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JM (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158(1):17–35. CrossRefPubMedGoogle Scholar
  27. Hänggi A, Stöckli E, Nentwig W (1995) Lebensräume mitteleuropäischer Spinnen. Charakterisierung der Lebensräume der häufigsten Spinnenarten Mitteleuropas und der mit diesen vergesellschafteten Arten = Habitats of Central European spiders. Neuchâtel: Centre Suisse de Cartographie de la Faune (Miscellanea faunistica Helvetiae, 4).
  28. Heimer S, Nentwig W (1991) Spinnen Mitteleuropas. Paul Parey, BerlinGoogle Scholar
  29. Hejda M, Pysek P, Jarosik V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. CrossRefGoogle Scholar
  30. Herrera AM, Dudley TL (2003) Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol Invasions 5:167–177. CrossRefGoogle Scholar
  31. Hiebsch H, Tolke D (1996) Rote Liste der Weberknechte und Webspinnen. Materialien zu Naturschutz und Landschaftspflege. Landesamt für Umwelt und Geologie Freistaat Sachsen, RadebeulGoogle Scholar
  32. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. CrossRefPubMedGoogle Scholar
  33. Humbert J-Y, Ghazoul J, Richner N, Walter T (2012) Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol Conserv 152:96–101. CrossRefGoogle Scholar
  34. Joyce CB (2014) Ecological consequences and restoration potential of abandoned wet grasslands. Ecol Eng 66:91–102. CrossRefGoogle Scholar
  35. Kajak A, Kupryjanowicz J, Petrov P (2000) Long term changes in spider (Araneae) communities in natural and drained fens in the Biebrza River Valley. Ekologia (Bratisl) 19(Suppl. 4):55–64Google Scholar
  36. Kirsch EM, Gray BR, Fox TJ, Thogmartin WE (2007) Breeding bird territory placement in riparian wet meadows in relation to invasive reed canary grass, Phalaris arundinacea. Wetlands 27(3):644–655.[644:bbtpir] CrossRefGoogle Scholar
  37. Knops JM, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2(5):286–293. CrossRefGoogle Scholar
  38. Kott S (2009) Neophytische Spiraea-Arten in der Kernzone „Daubaner Wald“ des Biosphärenreservates „Oberlausitzer Heide- und Teichlandschaft“. Ber Nat Ges Oberlausitz 17:21–36Google Scholar
  39. Kujawa-Pawlaczyk J (2009) Krzewy i krzewinki. In: Dajdok Z, Pawlaczyk P (eds) Inwazyine gatunki ro´slin ekosystemów mokradlowych Polki. Wydawnictwo Klubu Przyrodników, Swiebedzin, pp 105–113Google Scholar
  40. Lenda M, Witek M, Skórka P, Morón D, Woyciechowski M (2013) Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol Invasions 15:2403–2414. CrossRefGoogle Scholar
  41. Lepš J, Šmilauer P (2012) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  42. Lindsay EA, French K (2006) The impact of the weed Chrysanthemoides monilifera ssp. rotundata on coastal leaf litter invertebrates. Biol Invasions 8:177–192. CrossRefGoogle Scholar
  43. Loomis JD, Cameron GN, Uetz GW (2014) Impact of the invasive shrub Lonicera maackii on shrub-dwelling Anraneae in a deciduous forest in eastern North America. Am Midl Nat 171:204–218. CrossRefGoogle Scholar
  44. Martin D (1991) Zur Autökologie der Spinnen (Arachnida: Araneae) I. Charakteristik der Habitataustattung und Präferenzvehalten epigäischer Spinnen. Arachnol Mitt 1:5–26CrossRefGoogle Scholar
  45. McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden BeachGoogle Scholar
  46. Middleton BA, Holsten B, Van Diggelen R (2006) Biodiversity management of fens and fen meadows by grazing, cutting and burning. Appl Veg Sci 9:307–331.[307:bmofaf];2 CrossRefGoogle Scholar
  47. Moles AT, Gruber MAM, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17. Google Scholar
  48. Moron D, Szentgyörgyi H, Wantuch M, Celary W, Westphal C, Settele J, Woyciechowski M (2008) Diversity of wild bees in wet meadows: implications for conservation. Wetlands 28:975–983. CrossRefGoogle Scholar
  49. Müller N, Sukopp H (2016) Influence of different landscape design styles on plant invasions in Central Europe. Landsc Ecol Eng 12:151–169. CrossRefGoogle Scholar
  50. Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2015) Spinnen Europas.
  51. Nickel H, Achtziger R (2005) Do they ever come back? Responses of leafhopper communities to extensification of land use. J Insect Conserv 9:319–333. CrossRefGoogle Scholar
  52. Pearson DE (2009) Invasive plant-architecture alters trophic interactions by changing predator abundance and behavior. Oecologia 159:549–558. CrossRefPubMedGoogle Scholar
  53. Pearson DE (2010) Trait- and density-mediated indirect interactions initiated by an exotic invasive plant autogenic ecosystem engineer. Am Nat 176(4):394–403. CrossRefPubMedGoogle Scholar
  54. Pernille E, Pedersen ML, Søren T (2015) Impact of invasive Rosa rugosa on the arthropod fauna of Danish yellow dunes. Biol Invasions 17:3289–3302. CrossRefGoogle Scholar
  55. Pétillon J, Ysnel F, Canard A, Lefeuvre JC (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: responses of spider populations. Biol Conserv 126(1):103–117. CrossRefGoogle Scholar
  56. Platen R, von Broen B (2005) Gesamtartenliste und Rote Liste der Webspinnen und Weberknechte (Arachnida: Araneae, Opiliones) des Landes Berlin. In: Der Landesbeauftragte für Naturschutz und Landschaftspflege/Senatsverwaltung für Stadtentwicklung (eds) Rote Liste der gefährdeten Pflanzen und Tiere von Berlin. CD-ROMGoogle Scholar
  57. Podlaska M (2014a) Natural valorization of degraded swamp-originating meadows of Lower Silesia (extension of the Owit method). Steciana 18:141–158. CrossRefGoogle Scholar
  58. Podlaska M (2014b) Probleme mit dem Filzigen Spierstrauch Spiraea tomentosa L. auf den Moorwiesen in der Nähe von Parowa. Peckiana 9:93–104Google Scholar
  59. Popovic M, Radadovic M, Durdevic A, Franeta F, Verovnik R (2014) Distribution and threats of Phengaris teleius (Lepidoptera: Lycaenidae) in northern Serbia. Acta Zool Acad Sci Hung 60:173–183Google Scholar
  60. Pysek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55. CrossRefGoogle Scholar
  61. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  62. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094. CrossRefGoogle Scholar
  63. Renner K (1980) Faunistisch-ökologische Untersuchungen der Käferfauna pflanzensoziologisch unterschiedlicher Biotope im Evessell-Bruch bei Bielefeld Sennestadt. Ber Naturwiss Ver Bielefeld, Sonderheft 2:145–176Google Scholar
  64. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. CrossRefGoogle Scholar
  65. Roberts JM (1985) The spiders of Great Britain and Ireland, vol 1. E.J. Brill, LeidenGoogle Scholar
  66. Roberts JM (1987) The spiders of Great Britain and Ireland, vol 2. Harley Books, Colchester, Essex, p 204Google Scholar
  67. Samu F, Csontos P, Szinetár C (2008) From multi-criteria approach to simple protocol: assessing habitat patches for conservation value using species rarity. Biol Conserv 141:1310–1320. CrossRefGoogle Scholar
  68. Scott AG, Oxford GS, Selden PA (2006) Epigeic spiders as ecological indicators of conservation value of Peat. Biol Conserv 127:420–428. CrossRefGoogle Scholar
  69. Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152(5):738–750CrossRefPubMedGoogle Scholar
  70. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Bella Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. CrossRefPubMedGoogle Scholar
  71. Smith LM, Schmitz OJ (2015) Invasive plants may promote predator-mediated feedback that inhibits further invasion. Ecol Evol 5:2411–2419. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Smith-Ramesh LM (2017) Invasive plant alters community and ecosystem dynamics by promoting native predators. Ecology 98:751–761CrossRefPubMedGoogle Scholar
  73. Staręga W, Błaszak C, Rafalski J (2002) Araneae spiders. In: Glowacinski Z (ed), Red List of threatened animals in Poland. Polish Academy of Sciences, Institute of Nature Conservation, Oficyna Wydawnicza Text, Kraków, p 134–138Google Scholar
  74. van Diggelen R, Middleton B, Bakker J, Grootjans A, Wassen M (2006) Fens and floodplains of the temperate zone: present status, threats, conservation and restoration. Appl Veg Sci 9:157–162.[157:fafott];2 CrossRefGoogle Scholar
  75. Wiatrowska B, Danielewicz W (2016) Environmental determinants of the steeplebush (Spiraea tomentosa L.) invasion in the Bory Dolnoslaskie Forest. Sylwan 160(8):696–704Google Scholar
  76. World Spider Catalog (2016) World spider catalog. Natural History Museum Bern.
  77. Wotavová K, Balounová Z, Kindlmann P (2004) Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol Conserv 118:271–279. CrossRefGoogle Scholar
  78. Zedler JB (2000) Progress in wetland restoration ecology. Trends Ecol Evol 15:402–407. CrossRefPubMedGoogle Scholar
  79. Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Plant Sci 23:431–452. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Senckenberg Museum of Natural History GörlitzGörlitzGermany

Personalised recommendations