Advertisement

Biodiversity and Conservation

, Volume 27, Issue 8, pp 1981–2002 | Cite as

Species richness, composition, and spatial distribution of vascular epiphytes in Amazonian black-water floodplain forests

  • Adriano C. Quaresma
  • Maria Teresa F. Piedade
  • Florian Wittmann
  • Hans ter Steege
Original Paper
  • 276 Downloads
Part of the following topical collections:
  1. Forest and plantation biodiversity

Abstract

This study examines the occurrence of vascular epiphytic species in Central Amazonian black-water floodplain forests (igapó) and considers whether their horizontal and vertical distribution is influenced by the flood pulse, as is the case with tree species (phorophytes). Research was conducted in sixteen forest plots the Jaú National Park. In these, epiphytes on all phorophytes with DBH ≥ 10 cm were identified. We measured flood height using the watermark left by the last high-water period, then estimated the height relative to the ground of every epiphytic individual. We recorded 653 individuals in 37 species, distributed on 109 phorophytes. Igapó floodplain forests have much lower richness and abundance of vascular epiphyte species than do other Amazonian forests. This may reflect the limitation of available sites for colonization (only 24.9% of studied trees were occupied by epiphytes). Holoepiphytes predominated, and the combined presence of a flood-pulse, linked to the nutrient-poor soil poor seems to limit the occurrence of nomadic vines. Horizontal distribution of epiphytes followed the distribution of phorophytes, which in turn followed the flood-level gradient. Also flooding interacted strongly with vertical zonation to determine species richness. As already well-reported for trees, and unlike reports of epiphytes in other floodplains, flooding strongly influenced richness and distribution of vascular epiphytes in the studied igapó forests.

Keywords

Wetlands Igapó Vertical distribution Horizontal distribution Flood pulse 

Notes

Acknowledgements

We acknowledge MSc Yuri Oliveira Feitosa for assistance with statistical analyses, Dr Maria de Lourdes Soares for help in aroid identification, Dr Ana Kelly Koch for help with Orchidaceae identification, and to MS Sebastião Maciel for help with identification of pteridophytes. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided a Doctorate scholarship to the first author, the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) gave logistical support, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for funding through the project PELD/MAUA (Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas Amazônicas) (Grant No. 403792/2012-6). Adrian Barnett helped with the English.

References

  1. Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121.  https://doi.org/10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  2. Barnett AA, Silva WS, Shaw PJA, Ramsay RM (2015) Inundation duration and vertical vegetation stratification: a preliminary description of the vegetation and structuring factors in Borokotóh (hummock igapó), an overlooked, high-diversity, Amazonian habitat. Nord J Bot 33:601–614.  https://doi.org/10.1111/njb.00744 CrossRefGoogle Scholar
  3. Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol 152:145–156.  https://doi.org/10.1023/A:1011483901452 CrossRefGoogle Scholar
  4. Benavides DAM, Duque AJ, Duivenvoorden MJF, Vasco A, Callejas R (2005) A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodivers Conserv 14:739–758.  https://doi.org/10.1007/s10531-004-3920-9 CrossRefGoogle Scholar
  5. Benavides AM, Vasco A, Duque AJ, Duivenvoorden JF (2011) Association of vascular epiphytes with landscape units and phorophytes in humid lowland forests of Colombian Amazonia. J Trop Ecol 27:223–237.  https://doi.org/10.1017/S0266467410000726 CrossRefGoogle Scholar
  6. Bennet BC (1986) Patchiness, diversity, and abundance relationships of vascular epiphytes. Selbyana 9:70–75Google Scholar
  7. Benzing DH (1990) Vascular epiphytes. Cambridge University Press, New York, p 372pCrossRefGoogle Scholar
  8. Bernal R, Valverde T, Hernandez-Rosas L (2005) Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Can J Bot 83:1238–1247.  https://doi.org/10.1139/b05-076 CrossRefGoogle Scholar
  9. Blick R, Burns KC (2009) Network properties of arboreal plants: are epiphytes, mistletoes and lianas structured similarly? Perspect Plant Ecol Evol Syst 11:41–52.  https://doi.org/10.1016/j.ppees.2008.10.002 CrossRefGoogle Scholar
  10. Boelter CR, Dambros CS, Nascimento HEM, Zartman CE (2014) A tangled web in tropical tree-tops: effects of edaphic variation, neighbourhood phorophyte composition and bark characteristics on epiphytes in a central Amazonian forest. J Veg Sci 25:1090–1099.  https://doi.org/10.1111/jvs.12154 CrossRefGoogle Scholar
  11. Borgo M, Silva SM (2003) Epífitos vasculares em fragmentos de floresta ombrófila mista, Curitiba, Paraná, Brasil. Braz J Bot 26:39–401.  https://doi.org/10.1590/S0100-84042003000300012 CrossRefGoogle Scholar
  12. Burns KC (2007) Network properties of an epiphyte metacommunity. J Ecol 95:1142–1151.  https://doi.org/10.1111/j.1365-2745.2007.01267.x CrossRefGoogle Scholar
  13. Burns KC, Zotz G (2010) A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. Ecology 91:377–385.  https://doi.org/10.1890/08-2004.1 CrossRefPubMedGoogle Scholar
  14. Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC (2002) Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221–230.  https://doi.org/10.1007/s00442-002-0943-3 CrossRefPubMedGoogle Scholar
  15. Cortes-Anzures BO, Corona-López AM, Toledo-Hernández VH, SuValencia-Díaz S, Flores-Palacios A (2017) Branchmortalityinfluencesphorophytequality for vascular epiphytes. Botany 95(7):709–716.  https://doi.org/10.1139/cjb-2017-0023 CrossRefGoogle Scholar
  16. Cruz J (1994) Aspectos ecológicos das Orchidaceae de terra firme do Campo Petrolífero do Rio Urucu, Amazonas – Brasil. MSc Thesis, Instituto Nacional de Pesquisas da Amazônia ManausGoogle Scholar
  17. Cruz J, Braga PIS (1997) Aspectos Taxonômicos e Fenológicos de Orchidaceae Epífitas no Campo Petrolífero do Rio Urucu, Amazonas—Brasil. Rev Univ Amazon Sér Ciênc Biol 1:1–134Google Scholar
  18. Dejean A, Olmsted I, Snelling RR (1995) Tree–epiphyte–ant relationship in the low inundated Forest of Sian Ka’na Biosphere Reserve, Quintana Roo, Mexico. Biotropica 27:57–70.  https://doi.org/10.2307/2388903 CrossRefGoogle Scholar
  19. Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodivers Conserv 6:1353–1363.  https://doi.org/10.1023/A:1018385529531 CrossRefGoogle Scholar
  20. Ferreira LV (2000) Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian black water floodplain forests: implications for future design of protected areas. Biodivers Conserv 9:1–14.  https://doi.org/10.1023/A:1008989811637 CrossRefGoogle Scholar
  21. Flores-Palacios A (2016) Does structural parasitism by epiphytes exist? A case study between Tillandsia recurvata and Parkinsonia praecox. Plant Biol 18:463–470.  https://doi.org/10.1111/plb.12406 CrossRefPubMedGoogle Scholar
  22. Flores-Palacios A, García-Franco JG (2001) Sampling methods for vascular epiphytes: their effectiveness in recording species richness and frequency. Selbyana 22:181–191.  https://doi.org/10.2307/41760095 CrossRefGoogle Scholar
  23. Flores-Palacios A, García-Franco JG (2008) Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodivers Conserv 17:191–207.  https://doi.org/10.1007/s10531-007-9239-6 CrossRefGoogle Scholar
  24. Flores-Palacios A, García-Franco JG, Capistrán-Barradas A (2015) Biomass, phorophyte specificity and distribution of Tillandsia recurvata in a tropical semi-desert environment (Chihuahuan Desert, Mexico). Plant Ecol Evol. 148:68–75.  https://doi.org/10.5091/plecevo.2015.874 CrossRefGoogle Scholar
  25. Freiberg M (1996) Spatial distribution of vascular epiphytes on three emergent canopy trees in French Guiana. Biotropica 28:345–355.  https://doi.org/10.2307/2389198 CrossRefGoogle Scholar
  26. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon Floodplain: ecology of a pulsing system. Ecol. Stud. 126. Springer, Berlin, pp 47–68Google Scholar
  27. Gentry A, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233.  https://doi.org/10.2307/2399395 CrossRefGoogle Scholar
  28. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391.  https://doi.org/10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  29. Hietz P, Hietz-Seifert U (1995) Intra and interspecific relations within an epiphyte community in a Mexican humid montane forest. Selbyana 16:135–140. http://www.jstor.org/stable/41759896
  30. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  31. Horn H (1966) Measurement of “overlap” in comparative ecological studies. Am Nat 100:419–424CrossRefGoogle Scholar
  32. Irume MV, Moraes MCLS, Zartman CE, Amaral IL (2013) Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia. Acta Bot Bras 27:378–393.  https://doi.org/10.1590/S0102-33062013000200012 CrossRefGoogle Scholar
  33. Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59:1–136Google Scholar
  34. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci 106:110–127Google Scholar
  35. Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney MJ, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640.  https://doi.org/10.1007/s13157-011-0190-7 CrossRefGoogle Scholar
  36. Junk WJ, Wittmann F, Schongart J, Piedade MTF (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetl Ecol Manag 23:677–693.  https://doi.org/10.1007/s11273-015-9412-8 CrossRefGoogle Scholar
  37. Kernan C, Fowler N (1995) Differential substrate use by epiphytes in Corcovado National Park, Costa Rica: a source of guild structure. J Ecol 83:65–73.  https://doi.org/10.2307/2261151 CrossRefGoogle Scholar
  38. Kersten RA (2010) Epífitas vasculares—História, participação taxonômica e aspectos relevantes com ênfase na Mata Atlântica. Hoehnea 37:9–38.  https://doi.org/10.1590/S2236 CrossRefGoogle Scholar
  39. Kersten RA, Waechter JL (2011) Métodos quantitativos no estudo de comunidades epifíticas. In: Felfili JM et al (ed) Fitossociologia no Brasil: métodos e estudos de caso, vol 1. UFV, Viçosa, pp 231–253Google Scholar
  40. Kersten RA, Borgo M, Silva MS (2009) Diversity and distribution of vascular epiphytes in an insular Brazilian coastal forest. Rev Biol Trop 57: 49–759. ISSN 0034-7744Google Scholar
  41. Laube S, Zotz G (2006) Long-term changes in the epiphyte vegetation of the palm, Socratea exorrhiza. J Veg Sci 17:307–314.  https://doi.org/10.1111/j.1654-1103.2006.tb02450.x CrossRefGoogle Scholar
  42. Leimbeck RM, Balslev H (2001) Species richness and abundance of epiphytic Araceae on adjacent floodplain and upland forest in Amazonian Ecuador. Biodivers Conserv 10:1579–1593.  https://doi.org/10.1023/A:1011865611683 CrossRefGoogle Scholar
  43. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/. Accessed 20 Mar 2015
  44. Mari MLG, Toledo JJ, Nascimento HME, Zartman CE (2016) Regional and fine scale variation of holoepiphyte community structure in Central Amazonian white-sand forests. Biotropica 48:70–80.  https://doi.org/10.1111/btp CrossRefGoogle Scholar
  45. Mondragón D, Valverde T, Hernandez-Apolimar M (2015) Population ecology of epiphytic angiosperms: a review. Trop Ecol 56:01–39.  https://doi.org/10.13140/2.1.4043.5849 CrossRefGoogle Scholar
  46. Montero CJ, Piedade MTP, Wittmann F (2012) Floristic variation across 600 km of inundation forest (Igapó) along the Negro River, Central Amazonia. Hydrobiologia 729:229–246.  https://doi.org/10.1007/s10750-012-1381-9 CrossRefGoogle Scholar
  47. Nieder J, Engwald S, Klawun M, Barthlott W (2000) Spatial distribution of vascular epiphytes (including hemiepiphytes) in a Lowland Amazonian Rain Forest (Surumoni Crane Plot) of Southern Venezuela. Biotropica 32:385–396.  https://doi.org/10.1111/j.1744-7429.2000.tb00485.x CrossRefGoogle Scholar
  48. Obermüller FA, Silveira M, Salimon CI, Daly DC (2012) Epiphytic (including hemiepiphytes) diversity in three timber species in the southwestern Amazon, Brazil. Biodivers Conserv 21:565–575.  https://doi.org/10.1007/s10531-011-0201-2 CrossRefGoogle Scholar
  49. Obermüller FA, Freitas L, Daly DC, Silveira M (2014) Patterns of diversity and gaps in vascular (hemi-)epiphyte flora of Southwestern Amazonia. Phytotaxa 166:259–272.  https://doi.org/10.11646/phytotaxa.166.4.2 CrossRefGoogle Scholar
  50. Orivel J, Leroy C (2010) The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecol News 14:73–85. ISSN 1997-3500Google Scholar
  51. Parolin P, Adis J, Silva MF, Amaral IL, Schmidt L, Piedade MTF (2003) Floristic composition of a floodplain forest in the Anavilhanas archipelago, Brazilian Amazonia. Amazoniana 17:399–411Google Scholar
  52. Parolin P, Adis J, Rodrigues WA, Amaral IL, Piedade MTF (2004) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana 18:29–47Google Scholar
  53. Pos ET, Sleegers ADM (2010) Vertical distribution and ecology of vascular epiphytes in a lowland tropical rain forest of Brazil. Bol Mus Para Emílio Goeldi, Sér Ciências Naturais 3:335–344. ISSN 1981-8114Google Scholar
  54. Quaresma AC, Piedade MTF, Feitosa YO, Wittmann F, ter Steege H (2017) Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems. Acta Bot Bras 31(4):686–697.  https://doi.org/10.1590/0102-33062017abb0156 CrossRefGoogle Scholar
  55. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  56. Ribeiro JELS, Hopkins MJG, Vicentini A et al (1999) Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central. Manaus, INPAGoogle Scholar
  57. Ruiz-Cordova JP, Toledo-Hernández VH, Flores-Palacios A (2014) The effect of substrate abundance in the vertical stratification of Bromeliad epiphytes in a tropical dry forest (Mexico). Flora 209:375–384.  https://doi.org/10.1016/j.flora.2014.06.003 CrossRefGoogle Scholar
  58. Sanford WW (1968) Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. J Ecol 56:697–705.  https://doi.org/10.2307/2258101 CrossRefGoogle Scholar
  59. Targhetta N, Kesselmeier J, Wittmann F (2015) Effects of the hydro-edaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobot 50:185–205.  https://doi.org/10.1007/s12224-015-9225-9 CrossRefGoogle Scholar
  60. ter Steege H, Cornellisen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331–339.  https://doi.org/10.2307/2388283 CrossRefGoogle Scholar
  61. ter Steege H et al (2013) Hyperdominance in the Amazonian tree flora. Science.  https://doi.org/10.1126/science.1243092 PubMedCrossRefGoogle Scholar
  62. Triana-Moreno LA, Garzón-Venegas NJ, Sánchez-Zambrano J, Vargas O (2003) Epífitas vasculares como indicadores de regeneración en bosques intervenidos de la amazonía Colombiana. Acta Biol Colomb 8:31–42Google Scholar
  63. Valencia-Díaz S, Flores-Palacios A, Rodríguez-López V, Ventura-Zapata E, Jiménez-Aparicio AR (2010) Effect of host-bark extracts on seed germination in Tillandsia recurvata, anepiphytic bromeliad. J Trop Ecol 26:571–581.  https://doi.org/10.1017/S0266467410000374 CrossRefGoogle Scholar
  64. Vergara-Torres CA, Pacheco-Álvarez MC, Flores-Palacios A (2010) Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J Trop Ecol 26:563–570.  https://doi.org/10.1017/S0266467410000349 CrossRefGoogle Scholar
  65. Wagner K, Mendieta-Leiva G, Zotz G (2015) Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants 7:1–25.  https://doi.org/10.1093/aobpla/plu092 CrossRefGoogle Scholar
  66. Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18:805–820.  https://doi.org/10.1017/S0266467402002523 CrossRefGoogle Scholar
  67. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manag 196:199–212.  https://doi.org/10.1016/j.foreco.2004.02.060 CrossRefGoogle Scholar
  68. Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecol Stud., pp 61–102. ISBN 978-90-481-8725-6Google Scholar
  69. Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481.  https://doi.org/10.1111/boj.12010 CrossRefGoogle Scholar
  70. Zotz G, Mendieta-Leiva G, Wagner K (2014) Vascular epiphytes at the treeline—composition of species assemblages and population biology. Flora 209:385–390.  https://doi.org/10.1016/j.flora.2014.06.001 CrossRefGoogle Scholar
  71. Zuquim G, Costa RCF, Prado J, Tuomisto H (2008) Guia de samambaias e licófitas da REBIO Uatumã—Amazônia Central. Manaus, INPAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Adriano C. Quaresma
    • 1
  • Maria Teresa F. Piedade
    • 1
  • Florian Wittmann
    • 2
  • Hans ter Steege
    • 3
    • 4
  1. 1.Grupo MAUAInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Department of BiogeochemistryMax Planck Institute for ChemistryMainzGermany
  3. 3.Naturalis Biodiversity CenterLeidenThe Netherlands
  4. 4.Coordenação de Botânica, Museu Paraense Emílio GoeldiBelémBrazil

Personalised recommendations