Advertisement

Biodiversity and Conservation

, Volume 28, Issue 4, pp 791–810 | Cite as

Tree species diversity facilitates conservation efforts of European yew

  • Jaroslav VencurikEmail author
  • Michal Bosela
  • Denisa Sedmáková
  • Ján Pittner
  • Stanislav Kucbel
  • Peter Jaloviar
  • Zuzana Parobeková
  • Milan Saniga
Original Paper
  • 2 Downloads
Part of the following topical collections:
  1. Topical Collection: Forest and plantation biodiversity

Abstract

European yew (Taxus baccata) is an endangered long-lived tree species. The species is facing a regeneration failure in a large part of its natural distribution, likely due to interplay of climate change and browsing by herbivores. Forest management approaches that support inter-specific complementarity can help the species mitigate these negative effects. However, a lack of long-term records has prevented an adequate answer to the facilitation hypothesis. Therefore, we compiled unique data from eleven long-term plots established on three sites in the western Carpathian Mountains in 1972, 1989 and 1995. During the past 30–50 years, forest stands were treated by various management alternatives, and the development of stands and regeneration were monitored in 5–12-year intervals. In this study, we tested the hypothesis that an increase in tree species diversity positively correlates with abundance of yew regeneration. Additionally, we compared the relationships between management and no-management alternatives. Our results revealed the positive correlation of tree species diversity and the quantity of yew regeneration. Moreover, an increase in the proportion of maple seedling at the expense of beech supported the establishment of yew seedlings at increased abundance. However, recently (since 1982) the growth of yew saplings did not exceed 20 cm in height, mostly because of heavy damage caused by deer browsing. We conclude that forest managers and conservationists can support the regeneration of yew using the treatments that increase tree species diversity.

Keywords

Deer browsing Forest dynamics Forest management Inter-species competition Long-term observations Nature reserve 

Notes

Acknowledgements

The Slovak Research and Development Agency within the project nos. APVV-14-0014 and APVV-15-0265 supported this study. Authors are thankful to Andrej Saxa, Jozef Bučko and Jozef Jankov for their assistance during the study.

Supplementary material

10531_2018_1692_MOESM1_ESM.docx (625 kb)
Supplementary material 1 (DOCX 625 kb)

References

  1. Barna M, Bosela M (2015) Tree species diversity change in natural regeneration of a beech forest under different management. For Ecol Manag 342:93–102.  https://doi.org/10.1016/j.foreco.2015.01.017 CrossRefGoogle Scholar
  2. Barták J (1929) On the history of state forest management in Banská Bystrica and Staré Hory District (in Slovak). Slovenská grafia, Banská BystricaGoogle Scholar
  3. Benham SE, Houston Durrant T, Caudullo G, de Rigo D (2016) Taxus baccata in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publ. Off. EU, Luxembourg, p 183Google Scholar
  4. Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193CrossRefGoogle Scholar
  5. Boerner REJ, Koslowsky SD (1989) Microsite variation in soil chemistry and nitrogen mineralisation in a beech—maple forest. Soil Biol Biochem 21:795–801CrossRefGoogle Scholar
  6. Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349CrossRefGoogle Scholar
  7. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965.  https://doi.org/10.1890/0012-9658(1997)078%5b1958:CAFASA%5d2.0.CO;2 CrossRefGoogle Scholar
  8. Casals P, Camprodon J, Caritat A, Ríos AI, Guixé D, Garcia-Martí X, Martín-Alcón S, Coll L (2015) Forest structure of mediterranean yew (Taxus baccata L.) populations and neighbor effects on juvenile yew performance in the NE Iberian Peninsula. For Syst.  https://doi.org/10.5424/fs/2015243-07469 Google Scholar
  9. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102(4):845–856.  https://doi.org/10.1111/1365-2745.12232 CrossRefGoogle Scholar
  10. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations. Centre for Agricultural Publication and Documentation, Wagningen, pp 298–312Google Scholar
  11. Cordonnier T, Kunstler G (2015) The Gini index brings asymmetric competition to light. Perspect Plant Ecol Evol Syst 17:107–115.  https://doi.org/10.1016/j.ppees.2015.01.001 CrossRefGoogle Scholar
  12. Devaney JL, Whelan PM, Jansen MAK (2018) Conspecific negative density dependence in a long-lived conifer, yew Taxus baccata L. Eur J For Res 137:69–78.  https://doi.org/10.1007/s10342-017-1091-y CrossRefGoogle Scholar
  13. Dhar A, Ruprecht H, Klumpp R, Vacik H (2007) Comparison of ecological condition and conservation status of English yew population in two Austrian gene conservation forests. J For Res 18:181–186.  https://doi.org/10.1007/s11676-007-0037-5 CrossRefGoogle Scholar
  14. Dobrowolska D, Niemczyk M, Olszowska G (2017) The influence of stand structure on European Yew Taxus baccata populations in its natural habitats in Central Poland. Pol J Ecol 65:369–384.  https://doi.org/10.3161/15052249PJE2017.65.3.005 CrossRefGoogle Scholar
  15. Dovčiak M (2002) Population dynamics of the endangered English yew (Taxus baccata L.) and its management implications for biosphere reserves of the Western Carpathians. Final report of young scientist Award, Division of Ecological Sciences, UNESCOGoogle Scholar
  16. EUFORGEN (2016) Distribution map of common yew (Taxus baccata). http://www.euforgen.org/species/taxus-baccata. Accessed 28 Jan 2018
  17. Farjon A (2013) Taxus baccata. The IUCN Red List of Threatened Species 2013.  https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T42546A2986660.en. Accessed 13 Dec 2017
  18. Farris E, Filigheddu R (2008) Effects of browsing in relation to vegetation cover on common yew (Taxus baccata L.) recruitment in Mediterranean environments. Plant Ecol 199:309–318.  https://doi.org/10.1007/s11258-008-9434-x CrossRefGoogle Scholar
  19. Forrester DI, Bauhus J (2016) A review of processes behind diversity—productivity relationships in forests. Curr For Reports 2:45–61.  https://doi.org/10.1007/s40725-016-0031-2 CrossRefGoogle Scholar
  20. García D, Obeso JR (2003) Facilitation by herbivore-mediated nurse plants in a threatened tree, Taxus baccata: local effects and landscape level consistency. Ecography 26:739–750.  https://doi.org/10.1111/j.0906-7590.2003.03601.x CrossRefGoogle Scholar
  21. García D, Zamora R, Hódar JA, Gómez JM, Castro J (2000) Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol Conserv 95:31–38CrossRefGoogle Scholar
  22. Gill RMA (1992) A review of damage by mammals in north temperate forests: 1. Deer. Forestry 65:145–169.  https://doi.org/10.1093/forestry/65.2.145 CrossRefGoogle Scholar
  23. Gini CW (1912) Variabilita e Mutabilita. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche, Tipografia di Paolo Cuppini, BolognaGoogle Scholar
  24. Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Chećko E, Forrester DI, Dawud SM, Finér L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A (2014) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci USA 111:14812–14815.  https://doi.org/10.1073/pnas.1411970111 CrossRefGoogle Scholar
  25. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145.  https://doi.org/10.1111/j.1469-185X.1977.tb01347.x CrossRefGoogle Scholar
  26. Hulme PE (1996) Natural regeneration of yew (Taxus baccata L.): microsite, seed or herbivore limitation? J Ecol 84:853–861CrossRefGoogle Scholar
  27. Iszkuło G (2010) Success and failure of endangered tree species: low temperatures and low light availability affect survival and growth of European yew (Taxus baccata L.) seedlings. Polish J Ecol 58:259–271Google Scholar
  28. Iszkuło G, Boratyński A (2004) Interaction between canopy tree species and European yew Taxus baccata (Taxaceae). Pol J Ecol 52:523–531Google Scholar
  29. Iszkuło G, Boratyński A (2005) Different age and spatial structure of two spontaneous subpopulations of Taxus baccata as a result of various intensity of colonization process. Flora 200:195–206.  https://doi.org/10.1016/j.flora.2004.03.001 CrossRefGoogle Scholar
  30. Iszkuło G, Boratyński A (2006) Analysis of the relationship between photosynthetic photon flux density and natural Taxus baccata seedlings occurrence. Acta Oecologica 29:78–84.  https://doi.org/10.1016/j.actao.2005.08.001 CrossRefGoogle Scholar
  31. Iszkuło G, Boratyński A, Didukh Y, Romaschenko K, Pryazhko N (2005) Changes of population structure of Taxus baccata L. during 25 years in protected area (Carpathians, Western Ukraine). Polish J Ecol 53:13–23Google Scholar
  32. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528CrossRefGoogle Scholar
  33. Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57:13–19.  https://doi.org/10.1007/s002530100757 CrossRefGoogle Scholar
  34. Köpp R, Chung D (1997) Entwicklung von Eibenjungpflanzen (Taxus baccata L.) in einem Beschattungsversuch. Forstarchiv 68:24–29Google Scholar
  35. Korpeľ Š (1981) Das grösste Eibenvorkommen in Europa. Allg Forstzeitung 36:9–10Google Scholar
  36. Korpeľ Š (1995) The importance of European yew, Taxus baccata, in forest ecosystems of Slovakia and possibilities to improve its status (in Slovak). SEA, Banská BystricaGoogle Scholar
  37. Korpeľ Š (1996) Das geschützte Eibenvorkommen Pavelcovo, seine Zustandanalyse, die naturschützerische und forstliche Bedeutung. In: Korpeľ Š, Saniga M, Scheeder T (eds) Der Eibenfreund. Eibenfreunde f.V, Zvolen, pp 21–32Google Scholar
  38. Korpeľ Š, Paule L (1976) Protected area Malé Plavno (in Slovak). Československá ochrana prírody 16:153–173Google Scholar
  39. Kucbel S, Saniga M, Jaloviar P, Vencurik J (2012) Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: a 40-years perspective. For Ecol Manag 264:125–133.  https://doi.org/10.1016/j.foreco.2011.10.011 CrossRefGoogle Scholar
  40. Kwit C, Horvitz CC, Platt WJ (2004) Conserving slow-growing, long-lived tree species: input from the demography of a rare understory conifer, Taxus floridana. Conserv Biol 18:432–443.  https://doi.org/10.1111/j.1523-1739.2004.00567.x CrossRefGoogle Scholar
  41. Kýpeťová M, Jaloviar P (2016) The influence of light conditions on growth and development of natural regeneration of European yew (Taxus baccata L.) in managed forest stand at the regeneration stage (in Slovak). Acta Fac For Zvolen 58:33–46Google Scholar
  42. Kýpeťová M, Walas Ł, Jaloviar P, Iszkuło G (2018) Influence of herbivory pressure on the growth rate and needle morphology of Taxus baccata juveniles. Dendrobiology 79:10–19.  https://doi.org/10.12657/denbio.079.002 CrossRefGoogle Scholar
  43. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974CrossRefGoogle Scholar
  44. LaManna JA, Mangan SA, Alonso A et al (2017) Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389–1392.  https://doi.org/10.1126/science.aam5678 CrossRefGoogle Scholar
  45. Leuschner C, Ellenberg H (2017) Ecology of Central European forests—vegetation ecology of Central Europe, vol I. Springer International Publishing, ChamCrossRefGoogle Scholar
  46. Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For Ecol Manag 243:116–127.  https://doi.org/10.1016/j.foreco.2007.02.028 CrossRefGoogle Scholar
  47. Linares JC (2013) Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). For Ecol Manag 291:119–127.  https://doi.org/10.1016/j.foreco.2012.11.009 CrossRefGoogle Scholar
  48. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808.  https://doi.org/10.1126/science.1064088 CrossRefGoogle Scholar
  49. Mcintire EJB, Fajardo A (2014) Facilitation as a ubiquitous driver of biodiversity. New Phytol 201:403–416.  https://doi.org/10.1111/nph.12478 CrossRefGoogle Scholar
  50. Mendoza I, Zamora R, Castro J (2009) A seeding experiment for testing tree-community recruitment under variable environments: implications for forest regeneration and conservation in Mediterranean habitats. Biol Conserv 142:1491–1499.  https://doi.org/10.1016/j.biocon.2009.02.018 CrossRefGoogle Scholar
  51. Mysterud A, Østbye E (2004) Roe deer (Capreolus capreolus) browsing pressure affects yew (Taxus baccata) recruitment within nature reserves in Norway. Biol Conserv 120:545–548.  https://doi.org/10.1016/j.biocon.2004.03.027 CrossRefGoogle Scholar
  52. Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554.  https://doi.org/10.1093/biomet/58.3.545 CrossRefGoogle Scholar
  53. Paule L, Radu S, Stojko SM (1996) Eibenvorkommen des Karpatenbogens. In: Korpeľ Š, Saniga M (eds) Der Eibenfreund 3. Technische Universität, Zvolen, pp 12–20Google Scholar
  54. Perrin PM, Mitchell FJG (2013) Effects of shade on growth, biomass allocation and leaf morphology in European yew (Taxus baccata L.). Eur J For Res 132:211–218.  https://doi.org/10.1007/s10342-012-0668-8 CrossRefGoogle Scholar
  55. Perrin PM, Kelly DL, Mitchell FJG (2006) Long-term deer exclusion in yew-wood and oakwood habitats in southwest Ireland: natural regeneration and stand dynamics. For Ecol Manag 236:356–367.  https://doi.org/10.1016/j.foreco.2006.09.025 CrossRefGoogle Scholar
  56. Pietzarka U (2005) Zur ökologischen Strategie von Taxus baccata L. In: Scheeder T (ed) Der Eibenfreund 12. Sierke Verlag, Göttingen, pp 45–71Google Scholar
  57. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) Linear and nonlinear mixed effects models. R Packag. version 3.1-117. http://CRAN.R-project.org/package=nlme. Accessed 15 Jan 2018
  58. Piovesan G, Saba EP, Biondi F, Alessandrini A, Di Filippo A, Schirone B (2009) Population ecology of yew (Taxus baccata L.) in the Central Apennines: spatial patterns and their relevance for conservation strategies. Plant Ecol 205:23–46.  https://doi.org/10.1007/s11258-009-9596-1 CrossRefGoogle Scholar
  59. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219CrossRefGoogle Scholar
  60. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 19 Jan 2018
  61. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208.  https://doi.org/10.1093/treephys/tpq035 CrossRefGoogle Scholar
  62. Romo A, Iszkuło G, Taleb MS, Walas Ł, Boratyński A (2017) Taxus baccata in Morocco: a tree in regression in its southern extreme. Dendrobiology 78:63–74.  https://doi.org/10.12657/denbio.078.007 CrossRefGoogle Scholar
  63. Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162.  https://doi.org/10.1034/j.1600-0706.2002.980116.x CrossRefGoogle Scholar
  64. Saniga M (1996) Zustand, Struktur und Regenerationsprozesse im Eibenreservat Harmanecká tisina. In: Korpeľ Š, Saniga M, Scheeder T (eds) Der Eibenfreund. Eibenfreunde f.V, Fürstenfeldbruck, pp 33–37Google Scholar
  65. Saniga M (2000) Structure, production and regeneration processes of English yew in the state nature reserve Plavno (in Slovak). J For Sci 46:76–90Google Scholar
  66. Schieber B, Janík R, Snopková Z (2009) Phenology of four broad-leaved forest trees in a submountain beech forest. J For Sci 55:15–22CrossRefGoogle Scholar
  67. Schulze ED, Bouriaud O, Wäldchen J, Eisenhauer N, Walentowski H, Seele C, Heinze E, Pruschitzki U, Danila G, Marin G, Hessenmöller D, Bouriaud L, Teodosiu M (2014) Ungulate browsing causes species loss in deciduous forests independent of community dynamics and silvicultural management in Central and Southeastern Europe. Ann For Res 57:267–288.  https://doi.org/10.15287/afr.2014.273 CrossRefGoogle Scholar
  68. Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455.  https://doi.org/10.1007/s004420050397 CrossRefGoogle Scholar
  69. Sedmáková D, Saniga M, Kucbel S, Pittner J, Kýpeťová M, Jaloviar P, Bugala M, Vencurik J, Lukáčik I (2017) Irregular shelterwood cuttings promote viability of European yew population growing in a managed forest: a case study from the Starohorské Mountains, Slovakia. Forests.  https://doi.org/10.3390/f8080289 Google Scholar
  70. Sedmáková D, Kýpetová M, Saniga M, Pittner J, Vencurik J, Kucbel S, Jaloviar P (2018) Deer game, a key factor affecting population of European yew in beech forests of the Velká Fatra Mts, Slovakia. Folia Oecologica 45:1–7.  https://doi.org/10.2478/foecol-2018-0001 CrossRefGoogle Scholar
  71. Seiwa K (2007) Trade-offs between seedling growth and survival in deciduous broadleaved trees in a temperate forest. Ann Bot 99:537–544.  https://doi.org/10.1093/aob/mcl283 CrossRefGoogle Scholar
  72. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656.  https://doi.org/10.1145/584091.584093 CrossRefGoogle Scholar
  73. Suszka B (1985) Conditions for after-ripening and germination of seeds and for seedling emergence of English yew (Taxus baccata L.). Arboretum Kórnickie 30:285–338Google Scholar
  74. Svenning JC, Magård E (1999) Population ecology and conservation status of the last natural population of English yew Taxus baccata in Denmark. Biol Conserv 88:173–182.  https://doi.org/10.1016/S0006-3207(98)00106-2 CrossRefGoogle Scholar
  75. Svoboda P (1947) The largest yew occurence in Central Europe (in Czech). Ochrana přírody 2:65–70Google Scholar
  76. Thomas PA, Garcia-Martí X (2015) Response of European yews to climate change: a review. For Syst 24:1–11.  https://doi.org/10.5424/fs/2015243-07465 Google Scholar
  77. Thomas PA, Polwart A (2003) Taxus baccata L. J Ecol 91:489–524.  https://doi.org/10.1046/j.1365-2745.2003.00783.x CrossRefGoogle Scholar
  78. Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: Theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861.  https://doi.org/10.1073/pnas.94.5.1857 CrossRefGoogle Scholar
  79. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845.  https://doi.org/10.1126/science.1060391 CrossRefGoogle Scholar
  80. Tschermak L (1949) Die Eibe im städtischen Forstamt, Neusohl, Slowakei, die grössten bisher bekannten Eibenvorkommen in Europa. Forstwiss Centbl 68:4–11CrossRefGoogle Scholar
  81. Valbuena R, Packalén P, Martín-Fernández S, Maltamo M (2012) Diversity and equitability ordering profiles applied to study forest structure. For Ecol Manag 276:185–195.  https://doi.org/10.1016/j.foreco.2012.03.036 CrossRefGoogle Scholar
  82. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, New YorkCrossRefGoogle Scholar
  83. Vitasse Y, Porté AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198.  https://doi.org/10.1007/s00442-009-1363-4 CrossRefGoogle Scholar
  84. Wallace D, Green SB (2002) Analysis of repeated measures designs with linear mixed models. In: Moskowitz DS, Hershberger SL (eds) Multivariate applications book series. Modeling intraindividual variability with repeated measures data: methods and applications. Lawrence Erlbaum Associates Publishers, Mahwah, pp 103–134Google Scholar
  85. Wood CC, Gross MR (2008) Elemental conservation units: communicating extinction risk without dictating targets for protection. Conserv Biol 22:36–47.  https://doi.org/10.1111/j.1523-1739.2007.00856.x CrossRefGoogle Scholar
  86. Yan Y, Zhang C, Wang Y, Zhao X, Gadow K (2015) Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol Evol 5:4287–4299.  https://doi.org/10.1002/ece3.1688 CrossRefGoogle Scholar
  87. Young B, Liang J, Chapin FS (2011) Effects of species and tree size diversity on recruitment in the Alaskan boreal forest: a geospatial approach. For Ecol Manage 262:1608–1617.  https://doi.org/10.1016/j.foreco.2011.07.011 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Silviculture, Faculty of ForestryTechnical Universityin ZvolenZvolenSlovak Republic
  2. 2.Department of Forest Management and Geodesy, Faculty of ForestryTechnical University in ZvolenZvolenSlovak Republic

Personalised recommendations