Advertisement

The palm Mauritia flexuosa, a keystone plant resource on multiple fronts

  • Yntze van der HoekEmail author
  • Sara Álvarez Solas
  • María Cristina Peñuela
Review Paper

Abstract

Keystone species are organisms, usually animals of higher trophic levels, that have large ecological impacts relative to their abundance. A recent extension of this concept recognizes hyperkeystone species, such as humans, which affect other keystone species and often play a key role in multiple ecosystem dynamics. Following a systematic review, we propose that the Neotropical palm species Mauritia flexuosa, though abundant locally, plays a role resembling that of a hyperkeystone species. First, it provides multiple types of key plant resources (food, nest sites, habitat) to a wide variety of species (at least 940 vertebrate species). Of vertebrates that directly use this palm as a food or nest resource (at least 74), at least 8 highly dependent on it for survival, 28 are threatened species, and at least 19 are keystone species themselves. This implies that a change in the abundance or distribution of Mauritia flexuosa is likely to have multiple cascading effects on Neotropical ecosystems. In addition, we highlight that this palm is also important for many invertebrates and other organisms and provides multiple ecosystem services, such as carbon sequestration. This vast ecological role of M. flexuosa, combined with its provision of a host of products to people, makes the species unique and worth prioritizing in conservation and plans for sustainable management across the Neotropics.

Keywords

Keystone species Neotropical palm Conservation priority Seed dispersal Ecosystem services 

Supplementary material

10531_2018_1686_MOESM1_ESM.xlsx (20 kb)
Supplementary material 1 (XLSX 19 kb)
10531_2018_1686_MOESM2_ESM.xlsx (46 kb)
Supplementary material 2 (XLSX 45 kb)

References

  1. Acevedo-Quintero JF, Zamora-Abrego JG (2016) Papel de los mamíferos en los procesos de dispersión y depredación de semillas de Mauritia flexuosa (Arecaceae) en la Amazonía colombiana. Rev Biol Trop 64:5–15CrossRefGoogle Scholar
  2. Aquino R (2005) Alimentación de mamíferos de caza en los «aguajales» de la Reserva Nacional de Pacaya-Samiria (Iquitos, Perú). Rev Peruana Biol 12:417–425Google Scholar
  3. Bakker VJ, Kelt DA (2000) Scale-dependent patterns in body size distributions of neotropical mammals. Ecology 81(12):3530–3547CrossRefGoogle Scholar
  4. Baños-Villalba A, Blanco G, Díaz-Luque JA et al (2017) Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci Rep 7(1):7373CrossRefGoogle Scholar
  5. Bednarz JC, Ripper D, Radley PM (2004) Emerging concepts and research directions in the study of cavity-nesting birds: keystone ecological processes. Condor 106:1–4CrossRefGoogle Scholar
  6. Bonnet X, Brischoux F, Pearson D et al (2009) Beach rock as a keystone habitat for amphibious sea snakes. Environ Conserv 36:62–70CrossRefGoogle Scholar
  7. Braga TMP, Rebêlo GH (2014) Traditional knowledge of the fishermen of the lower Juruá river: aspects related to the feeding habits of fish in the region [conhecimento tradicional dos pescadores do baixo rio Juruá: Aspectos relacionados aos hábitos alimentares dos peixes da região]. Interciencia 39:659–665Google Scholar
  8. Brewer SW, Rejmánek M (1999) Small rodents as significant dispersers of tree seeds in a Neotropical forest. J Veg Sci 10(2):165–174CrossRefGoogle Scholar
  9. Brightsmith DJ (2005) Parrot nesting in southeastern Peru: seasonal patterns and keystone trees. Wilson Bull 117:296–305CrossRefGoogle Scholar
  10. Brokamp G, Valderrama N, Mittelbach M et al (2011) Trade in palm products in north-western South America. Bot Rev 77:571–606CrossRefGoogle Scholar
  11. Cerda H, Martinez R, Briceno N et al (2001) Palm worm:(Rhynchophorus palmarum) traditional food in Amazonas, Venezuela—nutritional composition, small scale production and tourist palatability. Ecol Food Nutr 40:13–32CrossRefGoogle Scholar
  12. Chacón N, Herrera R, Méndez C et al (2018) Mechanisms involved in soil ammonium production in a Mauritia flexuosa palm swamp community. Wetlands 38(3):641–646CrossRefGoogle Scholar
  13. Davic RD (2003) Linking keystone species and functional groups: a new operational definition of the keystone species concept. Conserv Ecol 7(1):r11. http://www.consecol.org/vol7/iss1/resp11 CrossRefGoogle Scholar
  14. de Barros Leite A, Brancalion PH, Guevara R et al (2012) Differential seed germination of a keystone palm (Euterpe edulis) dispersed by avian frugivores. J Trop Ecol 28(6):615–618CrossRefGoogle Scholar
  15. De Grenade R (2013) Date palm as a keystone species in Baja California peninsula, Mexico oases. J Arid Environ 94:59–67CrossRefGoogle Scholar
  16. De Visser S, Thebault E, De Ruiter PC (2013) Ecosystem engineers, keystone species. Springer, DordrechtCrossRefGoogle Scholar
  17. del Hoyo J, Collar NJ, Christie DA et al (2017) Handbook of the birds of the world. Lynx Editions, BarcelonaGoogle Scholar
  18. Diaz-Martin Z, Swamy V, Terborgh J et al (2014) Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J Trop Ecol 30:291–301CrossRefGoogle Scholar
  19. Draper FC, Roucoux KH, Lawson IT et al (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 9(12):124017CrossRefGoogle Scholar
  20. Ellison AM, Bank MS, Clinton BD et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486CrossRefGoogle Scholar
  21. Endress BA, Horn CM, Gilmore MP (2013) Mauritia flexuosa palm swamps: composition, structure and implications for conservation and management. For Ecol Manage 302:346–353CrossRefGoogle Scholar
  22. Fouquet A, Gilles A, Vences M et al (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2:e1109CrossRefGoogle Scholar
  23. Fraija N, Fajardo GE (2006) Caracterización de la fauna del orden Lepidoptera (rhopalocera) en cinco diferentes localidades de los llanos orientales colombianos. Acta Biol Colomb 11:55–68Google Scholar
  24. Galeano A, Urrego LE, Sánchez M et al (2015) Environmental drivers for regeneration of Mauritia flexuosa Lf in Colombian Amazonian swamp forest. Aquat Bot 123:47–53CrossRefGoogle Scholar
  25. Gibbons P, Lindenmayer D, Fischer J et al (2008) The future of scattered trees in agricultural landscapes. Conserv Biol 22:1309–1319CrossRefGoogle Scholar
  26. Gilmore MP, Endress BA, Horn CM (2013) The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J Ethnobiol Ethnomed 9:29CrossRefGoogle Scholar
  27. Goodman RC, Phillips OL, del Castillo Torres D et al (2013) Amazon palm biomass and allometry. For Ecol Manage 310:994–1004CrossRefGoogle Scholar
  28. Goulding M, Smith N (2007) Palms: sentinels for Amazon conservation. Missouri Botanical Garden Press, St. LouisGoogle Scholar
  29. Gurgel-Gonçalves R, Cura C, Schijman AG et al (2012) Infestation of Mauritia flexuosa palms by triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi and Trypanosoma rangeli in the Brazilian savanna. Acta Trop 121:105–111CrossRefGoogle Scholar
  30. Heithaus MR, Frid A, Wirsing AJ et al (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210CrossRefGoogle Scholar
  31. Horn CM, Gilmore MP, Endress BA (2012) Ecological and socio-economic factors influencing aguaje (Mauritia flexuosa) resource management in two indigenous communities in the Peruvian Amazon. For Ecol Manage 267:93–103CrossRefGoogle Scholar
  32. Khorsand Rosa R, Koptur S (2013) New findings on the pollination biology of Mauritia flexuosa (Arecaceae) in Roraima, Brazil: linking dioecy, wind, and habitat. Am J Bot 100(3):613–621CrossRefGoogle Scholar
  33. Koolen HH, da Silva FM, Gozzo FC et al (2013) Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC–ESI-MS/MS. Food Res Int 51:467–473CrossRefGoogle Scholar
  34. Lähteenoja O, Ruokolainen K, Schulman L et al (2009) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 15(9):2311–2320CrossRefGoogle Scholar
  35. Lasso CA, Colonnello G, Moraes M (2016) XIV. Morichales, cananguchales y otros palmares inundables de Suramérica. Parte II: Colombia, Venezuela, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, BogotáGoogle Scholar
  36. Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures–implications for conservation. Biol Conserv 132:311–321CrossRefGoogle Scholar
  37. Mäntylä E, Klemola T, Laaksonen T (2011) Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 165(1):143–151CrossRefGoogle Scholar
  38. Manzi M, Coomes OT (2009) Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. For Ecol Manage 257:510–517CrossRefGoogle Scholar
  39. Martins RC, Filgueiras TS, Ulysses P (2012) Ethnobotany of Mauritia flexuosa (Arecaceae) in a maroon community in central Brazil. Econ Bot 66:91–98CrossRefGoogle Scholar
  40. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. BioScience 43:219–224CrossRefGoogle Scholar
  41. Mittermeier RA, Rylands AB, Wilson DE (2013) Handbook of the Mammals of the World. Primates, vol 3. Lynx Editions, BarcelonaGoogle Scholar
  42. Mouquet N, Gravel D, Massol F et al (2013) Extending the concept of keystone species to communities and ecosystems. Ecol Lett 16:1–8CrossRefGoogle Scholar
  43. Nason JD, Herre EA, Hamrick J (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687CrossRefGoogle Scholar
  44. Paine RT (1995) A conversation on refining the concept of keystone species. Conserv Biol 9(4):962–964CrossRefGoogle Scholar
  45. Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93CrossRefGoogle Scholar
  46. Peres CA (2000) Identifying keystone plant resources in tropical forests: the case of gums from Parkia pods. J Trop Ecol 16:287–317CrossRefGoogle Scholar
  47. Porro R, Miller RP, Tito MR et al (2012) Agroforestry in the Amazon region: a pathway for balancing conservation and development. In: Nair PKR (ed) Agroforestry-the future of global land use. Springer, DordrechtGoogle Scholar
  48. Power ME, Tilman D, Estes JA et al (1996) Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. Bioscience 46(8):609–620CrossRefGoogle Scholar
  49. Ramirez N, Brito Y (1990) Reproductive biology of a tropical palm swamp community in the Venezuelan llanos. Am J Bot 77:1260–1271CrossRefGoogle Scholar
  50. Robinson JG, Redford KH (1986) Body size, diet, and population density of Neotropical forest mammals. Am Nat 128(5):665–680CrossRefGoogle Scholar
  51. Roucoux KH, Lawson IT, Jones TD et al (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255CrossRefGoogle Scholar
  52. Schiesari L, Gordo M, Hödl W (2003) Treeholes as calling, breeding, and developmental sites for the Amazonian canopy frog, Phrynohyas resinifictrix (Hylidae). Copeia 2:263–272CrossRefGoogle Scholar
  53. Schlee M (2005) King vultures (Sarcoramphus papa) forage in moriche and cucurit palm stands. J Raptor Res 39(4):458–461Google Scholar
  54. Stevenson P (2005) Potential keystone plant species for the frugivore community at Tinigua Park, Colombia. In: Dew JL, Boubli JP (eds) Tropical fruits and frugivores: the search for strong interactors. Springer, DordrechtGoogle Scholar
  55. Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Phil Trans R Soc B 358(1438):1729–1740CrossRefGoogle Scholar
  56. Stagoll K, Lindenmayer DB, Knight E et al (2012) Large trees are keystone structures in urban parks. Conserv Lett 5:115–122CrossRefGoogle Scholar
  57. Tella JL, Baños-Villalba A, Hernández-Brito D et al (2015) Parrots as overlooked seed dispersers. Front Ecol Environ 13(6):338–339CrossRefGoogle Scholar
  58. Ter Steege H, Pitman NC, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092CrossRefGoogle Scholar
  59. Terborgh JW (1986) Keystone plant resources in the tropical forest. In: Soule I, Michael E (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, SunderlandGoogle Scholar
  60. Trolle M, Noss AJ, De Lima ES et al (2006) Camera-trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. Biodivers Conserv 16:1197–1204CrossRefGoogle Scholar
  61. Tubelis DP (2009) Veredas and their use by birds in the Cerrado, South America: a review. Biota Neotrop 9:363–374CrossRefGoogle Scholar
  62. Vegas-Vilarrubia T, Baritto F, López P et al (2010) Tropical histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage. Geoderma 155:280–288CrossRefGoogle Scholar
  63. Virapongse A, Endress BA, Gilmore MP et al (2017) Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob Ecol Conserv 10:70–92CrossRefGoogle Scholar
  64. Von Humboldt A, Bonpland A (1853) Personal narrative of travels to the equinoctial regions of America: during the years 1799–1804. Henry G, BohnGoogle Scholar
  65. Waller DM, Alverson WS (1997) The white-tailed deer: a keystone herbivore. Wildlife Society Bulletin (1973–2006). 25:217–226Google Scholar
  66. Woodward G, Ebenman B, Emmerson M et al (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409CrossRefGoogle Scholar
  67. Worm B, Paine RT (2016) Humans as a hyperkeystone species. Trends Ecol Evol 31:600–607CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidad Regional Amazónica IkiamTenaEcuador

Personalised recommendations