Essential biodiversity variables are not global

Commentary
  • 191 Downloads

Abstract

Recent initiatives have focused on biological diversity and the ecosystem services that it provides, and have proposed a series of “essential biodiversity variables,” as a means of describing and characterizing that diversity. Although such variables would shed considerable and interesting light on distribution of biodiversity-related dimensions, here, we examine the feasibility of assembling such data resources for terrestrial systems on worldwide extents, to evaluate whether they can be feasibly characterized globally. We found large-scale, consistent information gaps across five EBV-related dimensions (genetic composition, species populations, species traits, community composition, and primary biodiversity data), most markedly across Africa, the Middle East, Central Asia, and Eastern Europe; lesser gaps cover much of Asia and South America. Our results raise concerns that EBV-based initiatives, and the studies and policy decisions that they make, will be constrained from any global inference by these information gaps. Concrete progress towards making EBVs genuinely global will depend on adequate funding, training of high-level personnel, and creation of robust institutions in which to base these initiatives.

Keywords

Essential biodiversity variables Ecosystem services Genetic composition Populations Traits Community composition Primary biodiversity data 

References

  1. Amano T, Lamming JDL, Sutherland WJ (2016) Spatial gaps in global biodiversity information and the role of citizen science. Bioscience 16:393–400CrossRefGoogle Scholar
  2. Balmford A, Crane P, Dobson A, Green RE, Mace GM (2005) The 2010 challenge: data availability, information needs and extraterrestrial insights. Philos Trans Royal Soc Lond B 360:221–228CrossRefGoogle Scholar
  3. Costello MJ, Coll M, Danovaro R, Halpin P, Ojaveer H, Miloslavich P (2010) A census of marine biodiversity knowledge, resources and future challenges. PLoS ONE 8:e12110CrossRefGoogle Scholar
  4. Costello MJ, Appeltans W, Bailly N, Berendsohn WG, de Jong Y, Edwards M, Froese R, Huettmann F, Los W, Mees J (2014) Strategies for the sustainability of online open-access biodiversity databases. Biol Conserv 173:155–165CrossRefGoogle Scholar
  5. Costello MJ, Vanhoorne B, Appeltans W (2015) Progressing conservation of biodiversity through taxonomy, data publication and collaborative infrastructures. Conserv Biol 29:1094–1099CrossRefPubMedGoogle Scholar
  6. Cramer W, Kicklighter DW, Bondeau A, Iii BM, Churkina G, Nemry B, Ruimy A, Schloss AL, Participants of the Potsdam NPP Intercomparison Model (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5:1–15CrossRefGoogle Scholar
  7. Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88CrossRefGoogle Scholar
  8. Gaston KJ (1992) Taxonomy of taxonomists. Nature 356:281–282CrossRefGoogle Scholar
  9. Geeta R, Levy A, Hoch JM, Mark M (2004) Taxonomists and the CBD. Science 305:1105–1106CrossRefPubMedGoogle Scholar
  10. GEOBON (2011) Adequacy of biodiversity observation systems to support the CBD 2020 targets. Group on Earth Observations Biodiversity Observation Network, PretoriaGoogle Scholar
  11. Kissling WD, Ahumada JA, Bowser A, Fernandez M, Fernández N, García EA, Guralnick RP, Isaac NJB, Kelling S, Los W, McRae L, Mihoub J-B, Obst M, Santamaria M, Skidmore AK, Williams KJ, Agosti D, Amariles D, Arvanitidis C, Bastin L, Leo FD, Egloff W, Elith J, Hobern D, Martin D, Pereira HM, Pesole G, Peterseil J, Saarenmaa H, Schigel D, Schmeller DS, Segata N, Turak E, Uhlir PF, BrianWee, Hardisty AR (2017) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev.  https://doi.org/10.1111/brv.12359 PubMedGoogle Scholar
  12. Lira-Noriega A, Soberón J (2015) The relationship among biodiversity, governance, wealth, and scientific capacity at a country level: disaggregation and prioritization. Ambio 44:391–400CrossRefPubMedGoogle Scholar
  13. Martin LJ, Blossey B, Ellis E (2012) Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Frontiers Ecol Environ 10:195–201CrossRefGoogle Scholar
  14. Pausas JG, Ribeiro E (2017) Fire and plant diversity at the global scale. Glob Ecol Biogeogr 26:889–897CrossRefGoogle Scholar
  15. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC (2013) Essent biodiversity variables. Science 339:277–278CrossRefPubMedGoogle Scholar
  16. Peterson AT, Knapp S, Guralnick R, Soberón J, Holder MT (2010) The big questions for biodiversity informatics. Syst Biodivers 8:159–168CrossRefGoogle Scholar
  17. Peterson AT, Navarro-Sigüenza AG, Gordillo-Martínez A (2016) The development of ornithology in Mexico and the importance of access to scientific information. Arch Nat Hist 43:294–304CrossRefGoogle Scholar
  18. Poelen JH, Simons JD, Mungall CJ (2014) Global biotic interactions: an open infrastructure to share and analyze species-interaction datasets. Ecol Inform 24:148–159CrossRefGoogle Scholar
  19. Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW (2010) Biodiversity conservation: challenges beyond 2010. Science 329:1298–1303CrossRefPubMedGoogle Scholar
  20. Sarukhán J, Urquiza-Haas T, Koleff P, Carabias J, Dirzo R, Ezcurra E, Cerdeira-Estrada S, Soberón J (2015) Strategic actions to value, conserve, and restore the natural capital of megadiversity countries: the case of Mexico. Bioscience 65:164–173CrossRefPubMedGoogle Scholar
  21. Schmeller DS, Arvanitidis C, Böhm M, Brummitt N, Chatzinikolaou E, Costello MJ, Ding H, Gill MJ, Haase P, Julliard R, García-Moreno J (2017a) Case studies of capacity building for biodiversity monitoring. The GEO handbook on biodiversity observation networks. Springer, Berlin, pp 309–326CrossRefGoogle Scholar
  22. Schmeller DS, Mihoub J-B, Bowser A, Arvanitidis C, Costello MJ, Fernandez M, Geller GN, Hobern D, Kissling WD, Regan E, Saarenmaa H, Turak E, Isaac NJB (2017b) An operational definition of essential biodiversity variables. Biodivers Conserv.  https://doi.org/10.1007/s10531-017-1386-9 Google Scholar
  23. Schmeller DS, Weatherdon LV, Loyau A, Bondeau A, Brotons L, Brummitt N, Geijzendorffer IR, Haase P, Kuemmerlen M, Martin CS, Mihoub J-B, Rocchini D, Saarenmaa H, Stoll S, Regan EC (2017c) A suite of essential biodiversity variables for detecting critical biodiversity change. Biol Rev.  https://doi.org/10.1111/brv.12332 Google Scholar
  24. Scholes RJ, Mace GM, Turner W, Geller GN, Jürgens N, Larigauderie A, Muchoney D, Walther BA, Mooney H (2008) Toward a global biodiversity observing system. Science 321:1044–1045CrossRefPubMedGoogle Scholar
  25. Simard M, Pinto N, Fisher J, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res 116:G04021CrossRefGoogle Scholar
  26. Soberón J, Peterson AT (2004) Biodiversity informatics: managing and applying primary biodiversity data. Philos Trans Royal Soc Lond B 359:689–698CrossRefGoogle Scholar
  27. Soberón J, Peterson AT (2009) Monitoring biodiversity loss with primary species-occurrence data: toward national-level indicators for the 2010 target of the convention on biological diversity. Ambio 38:29–34CrossRefPubMedGoogle Scholar
  28. Soberón J, Llorente J, Benitez H (1996) An international view of national biological surveys. Ann Mo Bot Gard 83:562–573CrossRefGoogle Scholar
  29. Sousa-Baena MS, Garcia LC, Peterson AT (2013) Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers Distrib 20:369–381CrossRefGoogle Scholar
  30. Stokstad E (2017) UN biodiversity group confronts cash crunch. Science 355:1358CrossRefPubMedGoogle Scholar
  31. Tittensor DP, Walpole M, Hill SLL, Boyce DG, Britten GL, Burgess ND, Butchart SHM, Leadley PW, Regan EC, Alkemade R, Baumung R, Bellard C, Bouwman L, Bowles-Newark NJ, Chenery AM, Cheung WWL, Christensen V, Cooper HD, Crowther AR, Dixon MJR, Galli A, Gaveau V, Gregory RD, Gutierrez NL, Hirsch TL, Höft R, Januchowski-Hartley SR, Karmann M, Krug CB, Leverington FJ, Loh J, Lojenga RK, Malsch K, Marques A, Morgan DHW, Mumby PJ, Newbold T, Noonan-Mooney K, Pagad SN, Parks BC, Pereira HM, Robertson T, Rondinini C, Santini L, Scharlemann JPW, Schindler S, Sumaila UR, Teh LSL, van Kolck J, Visconti P, Ye Y (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346:241–244CrossRefPubMedGoogle Scholar
  32. Xu C, Hantson S, Holmgren M, van Nes EH, Staal A, Scheffer M (2016) Remotely sensed canopy height reveals three pantropical ecosystem states. Ecology 97:2518–2521CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Biodiversity InstituteThe University of KansasLawrenceUSA

Personalised recommendations