Biodiversity and Conservation

, Volume 27, Issue 2, pp 381–394 | Cite as

Pattern of evolutionarily distinct species among four classes of animals and their conservation status: a comparison using evolutionary distinctiveness scores

  • Federico MorelliEmail author
  • Anders Pape Møller
Original Paper


The percentage of species with high evolutionary distinctiveness (ED) scores in four different classes was related to conservation concern. We considered the number of species belonging to the upper level of the distribution of ED scores, and the overall distribution of ED scores in each category of concern assigned by IUCN. Generalized linear and mixed models were used to explore the relationship between variables, separately for each animal class. Overall values of ED score were higher for Squamates, Rhynchocephalia and amphibians than mammals and birds. However, the frequency distribution of ED scores was similar among classes, with a leptokurtotic distribution. Amphibians, reptiles, birds and mammals showed a markedly right skewed distribution, with a similar proportion of species in each equal category of the distribution. In all classes, the number of species with the highest ED score (positioned in the upper 20% of the frequency distribution of the variable) was very small ranging between 0.01 and 0.05%. ED score was slightly but negatively correlated with IUCN conservation status in amphibians, but unrelated in the other three classes. The bird population trend was unrelated to ED score of bird species in both USA and Europe. Also, the population’s trend for selected mammal species was unrelated to the ED score of those species. Our results provide more evidence that distribution shape of ED of animal forms is uniform among classes, with only very few species characterized by highest ED scores in each group. Surprisingly, ED score and IUCN conservation status were unrelated in the four classes examined. Finally, our study underlines that declining animals are not necessarily the most evolutionarily distinct species.


Conservation Evolutionary distinctiveness IUCN status Species uniqueness Taxa 

Supplementary material

10531_2017_1441_MOESM1_ESM.csv (2 mb)
Supplementary material 1 (CSV 2035 kb)


  1. Augusti J (1996) La lógica de las extinciones, 1st edn. Tusquets Editores S.A, BarcelonaGoogle Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4—R package.
  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  4. Bennett PM, Owens IPF (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B 264:401–408. doi: 10.1098/rspb.1997.0057 CrossRefGoogle Scholar
  5. Bennett PM, Owens IPF (2002) Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford University Press, OxfordGoogle Scholar
  6. BirdLife International (2014) The IUCN Red List of Threatened Species.,
  7. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252Google Scholar
  8. Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017. doi: 10.1073/pnas.0805962105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. doi: 10.1111/j.1461-0248.2009.01314.x CrossRefPubMedGoogle Scholar
  10. Cavin L, Kemp A (2011) The impact of fossils on the Evolutionary Distinctiveness and conservation status of the Australian lungfish. Biol Conserv 144:3140–3142. doi: 10.1016/j.biocon.2011.08.014 CrossRefGoogle Scholar
  11. Coghill LM, Hulsey CD, Chaves-Campos J et al (2013) Phylogeography and conservation genetics of a distinct lineage of sunfish in the Cuatro Ciénegas Valley of Mexico. PLoS ONE 8:1–10. doi: 10.1371/journal.pone.0077013 CrossRefGoogle Scholar
  12. Collen B, Turvey ST, Waterman C et al (2011) Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Philos Trans R Soc Lond B 366:2611–2622. doi: 10.1098/rstb.2011.0109 CrossRefGoogle Scholar
  13. Davies RG, Orme CDL, Olson V et al (2006) Human impacts and the global distribution of extinction risk. Proc R Soc Lond B 273:2127–2133. doi: 10.1098/rspb.2006.3551 CrossRefGoogle Scholar
  14. Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 98:5399–5403. doi: 10.1073/pnas.091092698 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi: 10.1016/0006-3207(92)91201-3 CrossRefGoogle Scholar
  16. Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. doi: 10.1016/j.baae.2009.12.001 CrossRefGoogle Scholar
  17. Greenberg DA, Mooers AØ (2017) Linking speciation to extinction: diversification raises contemporary extinction risk in amphibians. Evol Lett 1:40–48. doi: 10.1002/evl3.4 CrossRefGoogle Scholar
  18. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32. doi: 10.1016/j.biocon.2008.10.006 CrossRefGoogle Scholar
  19. Herrera-Flores JA, Stubbs TL, Benton MJ (2017) Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60:319–328. doi: 10.1111/pala.12284 CrossRefGoogle Scholar
  20. Isaac NJB, Turvey ST, Collen B et al (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2:e296. doi: 10.1371/journal.pone.0000296 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Isaac NJB, Redding DW, Meredith HM, Safi K (2012) Phylogenetically-informed priorities for amphibian conservation. PLoS ONE 7:e43912. doi: 10.1371/journal.pone.0043912 CrossRefPubMedPubMedCentralGoogle Scholar
  22. IUCN (2017) IUCN 2017. The IUCN Red List of Threatened Species. Version 2016-3.
  23. Jetz W, Thomas GH, Joy JB et al (2014) Global distribution and conservation of evolutionary distinctness in birds. Curr Biol 24:919–930. doi: 10.1016/j.cub.2014.03.011 CrossRefPubMedGoogle Scholar
  24. Keith D, Akçakaya HRR, Butchart SHM et al (2015) Temporal correlations in population trends: conservation implications from time-series analysis of diverse animal taxa. Biol Conserv 192:247–257. doi: 10.1016/j.biocon.2015.09.021 CrossRefGoogle Scholar
  25. Lai S-M, Liu W-C, Jordan F (2012) On the centrality and uniqueness of species from the network perspective. Biol Lett 8:570–573. doi: 10.1098/rsbl.2011.1167 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leakey R, Lewin R (1996) The sixth extinction: biodiversity and its survival. Phoenix (an imprint of The Orion Publishing Group Ltd.), LondonGoogle Scholar
  27. Meyer D, Dimitriadou E, Hornik K et al (2017) Misc functions of the Department of Statistics, Probability Theory Group (formerly: e1071), R package. TU WienGoogle Scholar
  28. Mooers AØ, Goring SJ, Turvey ST, Kuhn TS (2009) Holocene extinctions and the loss of feature diversity. Holocene extinctions. Oxford University Press, Oxford, pp 263–278CrossRefGoogle Scholar
  29. Morelli F, Benedetti Y, Ibáñez-Álamo JD et al (2016) Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob Ecol Biogeogr 25:1284–1293. doi: 10.1111/geb.12486 CrossRefGoogle Scholar
  30. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  31. Rachev ST, Menn C, Fabozzi FJ (2005) Fat-tailed and skewed asset return distributions: implications for risk management, portfolio selection, and option pricing. Wiley, HobokenGoogle Scholar
  32. Redding DW, Mooers AO (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20:1670–1678. doi: 10.1111/j.1523-1739.2006.00555.x CrossRefPubMedGoogle Scholar
  33. Redding DW, Hartmann K, Mimoto A et al (2008) Evolutionarily distinctive species often capture more phylogenetic diversity than expected. J Theor Biol 251:606–615. doi: 10.1016/j.jtbi.2007.12.006 CrossRefPubMedGoogle Scholar
  34. Redding DW, Dewolff CV, Mooers AØ (2010) Evolutionary distinctiveness, threat status, and ecological oddity in primates. Conserv Biol 24:1052–1058. doi: 10.1111/j.1523-1739.2010.01532.x CrossRefPubMedGoogle Scholar
  35. Redding DW, Mooers AO, Şekercioğlu ÇH, Collen B (2015) Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities. Philos Trans R Soc Lond B 370:20140013. doi: 10.1098/rstb.2014.0013 CrossRefGoogle Scholar
  36. Safi K, Cianciaruso MV, Loyola RD et al (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc Lond B 366:2536–2544. doi: 10.1098/rstb.2011.0024 CrossRefGoogle Scholar
  37. Safi K, Armour-Marshall K, Baillie JEM, Isaac NJB (2013) Global patterns of evolutionary distinct and globally endangered amphibians and mammals. PLoS ONE 8:e63582. doi: 10.1371/journal.pone.0063582 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sax DF, Gaines SD (2008) Species invasions and extinction: the future of native biodiversity on islands. Proc Natl Acad Sci USA 105:11490–11497. doi: 10.1073/pnas.0802290105 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sax DF, Gaines SD, Brown JH (2002) Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am Nat 160:766–783. doi: 10.1086/343877 CrossRefPubMedGoogle Scholar
  40. Stephens PA, Mason LR, Green RE et al (2016) Consistent response of bird populations to climate change on two continents. Science 352:84–87. doi: 10.1126/science.aac4858 CrossRefPubMedGoogle Scholar
  41. Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi: 10.1126/science.1103538 CrossRefPubMedGoogle Scholar
  42. Thuiller W, Lavergne S, Roquet C et al (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534. doi: 10.1038/nature09705 CrossRefPubMedGoogle Scholar
  43. Tonini JFR, Beard KH, Ferreira RB et al (2016) Data from: fully-sampled phylogenies of Squamates reveal evolutionary patterns in threat status. In: Dryad Digital Repository. doi: 10.5061/dryad.db005
  44. Triola MF (2012) Elementary statistics, 12th edn. Pearson International, New YorkGoogle Scholar
  45. Tucker CM, Cadotte MW, Carvalho SB et al (2016) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715. doi: 10.1111/brv.12252 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254. doi: 10.1016/0006-3207(91)90030-D CrossRefGoogle Scholar
  47. Vellend M, Cornwell WK, Magnuson-ford K, Mooers AØ (2010) Measuring phylogenetic biodiversity. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 193–206Google Scholar
  48. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  49. Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14:782–787. doi: 10.1111/j.1461-0248.2011.01644.x CrossRefPubMedGoogle Scholar
  50. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473. doi: 10.1073/pnas.0801921105 CrossRefPubMedPubMedCentralGoogle Scholar
  51. White RL, Bennett PM (2015) Elevational distribution and extinction risk in birds. PLoS ONE 10:e0121849. doi: 10.1371/journal.pone.0121849 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204. doi: 10.1016/j.tree.2012.10.015 CrossRefPubMedGoogle Scholar
  53. Zoological Society of London (2008) Edge of existence programme.

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Applied Geoinformatics and Spatial Planning, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6Czech Republic
  2. 2.Faculty of Biological SciencesUniversity of Zielona GóraZielona GoraPoland
  3. 3.Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTechUniversité Paris-SaclayOrsay CedexFrance

Personalised recommendations