Advertisement

Biodiversity and Conservation

, Volume 27, Issue 2, pp 329–344 | Cite as

Plant community composition and structural characteristics of an invaded forest in the Galápagos

  • Gonzalo Rivas-Torres
  • S. Luke Flory
  • Bette Loiselle
Original Paper
Part of the following topical collections:
  1. Invasive species

Abstract

Non-native species have invaded habitats worldwide, greatly impacting the structure and function of native communities and ecosystems. To better understand mechanisms of invasion impacts and how to restore highly impacted and transformed ecosystems, studies are needed that evaluate invader effects on both biotic communities and structural characteristics. On Santa Cruz Island in Galápagos we compared biotic (plant species richness, diversity, and community composition) and structural (canopy openness, forest height, and leaf litter) characteristics of a relic forest dominated by an endemic and highly threatened tree and a forest dominated by an invasive tree. The forests are located within the historical distribution of the endemic tree, which now occupies only 1% of its original extent. We found that the invaded forest had 42% lower native plant species richness and 17% less plant diversity than the endemic tree dominated forest. Additionally, with the invader there was 36% greater non-native plant species richness, 37% higher non-native plant diversity, and highly dissimilar plant composition when compared to the endemic-dominated forest. Additionally, the invaded forest had a more open and taller tree canopy and greater leaf litter cover than native forest. The presence of the invasive tree and the associated forest structural changes were the primary factors in models that best explained higher non-native diversity in the invaded forest. Our correlational results suggest that an invasive tree has significantly altered plant assemblage and forest structural characteristics in this unique ecosystem. Experiments that remove the invader and evaluate native plant community responses are needed to identify thresholds for practical restoration of this threatened and biologically unique native forest.

Keywords

Cedrela odorata Ecuador Invasive plants Scalesia pedunculata 

Notes

Acknowledgements

We thank Wilson Villamar for valuable assistance with fieldwork, and GNP staff Danny Rueda, Christian Sevilla, Alonso Carrión, Galo Quezada and Wilson Cabrera for logistical support. We are also grateful to John Blake, Rob Fletcher, and Mauricio Nuñez-Regueiro for help with data analyses, and Patricia Jaramillo and Heinke Jaeger for their assistance with plant identification. The National Science Foundation funded Quantitative Spatial Ecology, Evolution and Environment QSE3-IGERT program, and Department of Wildlife Ecology and Conservation provided support for GR graduate studies at University of Florida and completion of this work. This work was also supported by the Ecuadorian Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, and the Tropical Conservation and Development Program (UF), which provided scholarships to GR for field work. This study was conducted under permit No. PC-21-12 in compliance with all regulations of the Galápagos National Park.

Supplementary material

10531_2017_1437_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 116 kb)
10531_2017_1437_MOESM2_ESM.docx (3.8 mb)
Supplementary material 2 (DOCX 3958 kb)

References

  1. Atkinson R, Trueman M, Guézou A, Paz M, Sanchez J, Silva M (2011) Native gardens for Galápagos—can community action prevent future plant invasions? In: Toral-Granda MV, Cayot L (eds) Galápagos report 2009–2010. Charles Darwin Foundation, Galápagos National Park and Consejo de Gobierno de Galápagos, Puerto Ayora, pp 159–163Google Scholar
  2. Bates D, Maechler M, Bolker B (2011) Lme4: linear mixed-effects models using s4 classes. R Package Version 0.999375-42. http://CRAN.R-project.org/package=lme4. Last accessed 20 May 2012
  3. Burnham KP, Anderson DR (1998) Model selection and multimodel inference. Springer, BerlinCrossRefGoogle Scholar
  4. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi: 10.1126/science.1187512 CrossRefPubMedGoogle Scholar
  5. Castro SA, Daehler CC, Silva L et al (2010) Floristic homogenization as a teleconnected trend in oceanic islands. Divers Distrib 16:902–910. doi: 10.1111/j.1472-4642.2010.00695.x CrossRefGoogle Scholar
  6. Cervera C, Parra-Tabla V (2009) Seed germination and seedling survival traits of invasive and non-invasive cogeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Plant Ecol 250:285–293CrossRefGoogle Scholar
  7. Cintrón BB (1990) Cedrela odorata L. Cedro hembra, Spanish cedar. In: Burns RM, Honkala BH (eds) Silvics of North America: 2. Hardwoods. Agriculture handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. http://www.na.fs.fed.us/spfo/pubs/silvics_manual/volume_2/vol2_Table_of_contents.htm. Accessed Mar 2016
  8. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211CrossRefGoogle Scholar
  9. de Abreu RCR, Durigan G (2011) Changes in the plant community of a Brazilian grassland savannah after 22 years of invasion by Pinus elliottii Engelm. Plant Ecol Divers 4:269–278. doi: 10.1080/17550874.2011.594101 CrossRefGoogle Scholar
  10. de Abreu RCR, de Miranda Santos FF, Durigan G (2014) Changes in plant community of seasonally semideciduous forest after invasion by Schizolobium parahyba at southeastern Brazil. Acta Oecol 54:57–64. doi: 10.1016/j.actao.2013.03.013 CrossRefGoogle Scholar
  11. Denslow JS (2003) Weeds in paradise: thoughts on the invasibility of tropical islands. Ann Mo Bot Gard 90:119–127. doi: 10.2307/3298531 CrossRefGoogle Scholar
  12. Denslow JS, Space JC, Thomas PA (2009) Invasive exotic plants in the tropical Pacific Islands: patterns of diversity. Biotropica 41:162–170. doi: 10.1111/j.1744-7429.2008.00469.x CrossRefGoogle Scholar
  13. Dornelas M, Gotelli NJ, McGill B et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299. doi: 10.1126/science.1248484 CrossRefPubMedGoogle Scholar
  14. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447. doi: 10.1890/070062 CrossRefGoogle Scholar
  15. Ellis EC, Klein Goldewijk K, Siebert S et al (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606. doi: 10.1111/j.1466-8238.2010.00540.x Google Scholar
  16. Ewel JJ, O’Dowd DJ, Bergelson J et al (1999) Deliberate introductions of species: research needs—benefits can be reaped, but risks are high. Bioscience 49:619–630. doi: 10.2307/1313438 CrossRefGoogle Scholar
  17. Ewel JJ, Mascaro J, Kueffer C, Lugo AE, Lach L, Gardener MR (2013) Islands: where novelty is the norm. In: Hobbs RJ, Higgs ES, Hall C (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Chichester, pp 29–44CrossRefGoogle Scholar
  18. Flory SL, D’Antonio CM (2015) Taking the long view on the ecological effects of plant invasions. Am J Bot 102:817–818. doi: 10.3732/ajb.1500105 CrossRefPubMedGoogle Scholar
  19. Frazer GW, Canham CD, Lertzman KP (1999) Gap light analyzer GLA, Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-color fisheye photographs, users manual and program documentation, version 2.0. Simon Fraser University and the Institute of Ecosystem Studies, BurnabyGoogle Scholar
  20. Gardener MR, Trueman M, Buddenhagen C, Heleno RH, Jaeger H, Atkinson R, Tye A (2013) A pragmatic approach to the management of plant invasions in Galápagos. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Springer, Dordrecht, pp 349–374CrossRefGoogle Scholar
  21. Guézou A, Trueman M, Buddenhagen CE et al (2010) An extensive alien plant inventory from the inhabited areas of Galápagos. PLoS ONE 5:e10276. doi: 10.1371/journal.pone.0010276 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guézou A, Chamorro S, Pozo P, Guerrero M, Atkinson R, Buddenhagen C, Jaramillo Díaz P, Gardener M (2017) CDF checklist of Galápagos introduced plants. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galápagos species checklist—Charles Darwin Foundation, Puerto Ayora, Galápagos. http://darwinfoundation.org/datazone/checklists/introduced-species/introduced-plants/. Accessed 23 May 2017
  23. Hamann O (2001) Demographic studies of three indigenous stand-forming plant taxa (Scalesia, Opuntia, and Bursera) in the Galápagos Islands, Ecuador. Biodivers Conserv 10:223–250CrossRefGoogle Scholar
  24. Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. doi: 10.1111/j.1365-2745.2009.01480.x CrossRefGoogle Scholar
  25. Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7. doi: 10.1111/j.1466-822X.2006.00212.x CrossRefGoogle Scholar
  26. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605. doi: 10.1016/j.tree.2009.05.012 CrossRefPubMedGoogle Scholar
  27. Hobbs RJ, Higgs ES, Hall C (2013) Novel ecosystems: intervening in the new ecological world order. Wiley, ChichesterCrossRefGoogle Scholar
  28. INGALA, ORSTOM, PRONAREG (1987) Inventario cartográfico de los recursos naturales, geomorfología, vegetación, hídricos, ecológicos y biofísicos de las islas Galápagos Ecuador. Ingala Edition, QuitoGoogle Scholar
  29. Itow S (1995) Phytogeography and ecology of Scalesia (Compositae) endemic to the Galápagos Islands. Pac Sci 49:17–30Google Scholar
  30. Itow S (2003) Zonation pattern, succession process and invasion by aliens in species-poor insular vegetation of the Galápagos Islands. Glob Environ Res 7(1):39–58Google Scholar
  31. Itow S, Mueller Dombois D (1988) Population structure, stand-level dieback and recovery of Scalesia pedunculata forest in the Galápagos Islands. Ecol Res 3:333–339CrossRefGoogle Scholar
  32. Jackson MH (1994) Galápagos, a Natural History. University of Calgary Press, CalgaryGoogle Scholar
  33. Jaeger H, Tye A, Kowarik I (2007) Tree invasion in naturally treeless environments: impacts of quinine (Cinchona pubescens) trees on native vegetation in Galápagos. Biol Conserv 140:297–307. doi: 10.1016/j.biocon.2007.08.014 CrossRefGoogle Scholar
  34. Jaramillo Díaz P, Guézou A (2013) CDF checklist of galápagos vascular plants. In: Bungartz F, Herrera H, Jaramillo P, Tirado N, Jiménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (eds) Charles Darwin Foundation Galápagos species checklist, Puerto Ayora, Galápagos. http://www.darwinfoundation.org/datazone/checklists/vascular-plants/. Accessed 03 Jun 2013
  35. Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62:1–41. doi: 10.2307/2937169 CrossRefGoogle Scholar
  36. Lugo AE (2004) The outcome of alien tree invasions in Puerto Rico. Front Ecol Environ 2:265–273. doi: 10.2307/3868267 CrossRefGoogle Scholar
  37. Lugo AE, Helmer E (2004) Emerging forests on abandoned land: Puerto Rico’s new forests. For Ecol Manag 190:145–161. doi: 10.1016/j.foreco.2003.09.012 CrossRefGoogle Scholar
  38. Lundh JP (2006) The farm area and cultivated plants on Santa Cruz, 1932–1965, with remarks on other parts of Galápagos. Galápagos Res 64:12–25Google Scholar
  39. Martínez OJA (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64. doi: 10.1007/s11258-010-9771-4 CrossRefGoogle Scholar
  40. Martinuzzi S, Lugo AE, Brandeis TJ, Helmer EH (2013) Case study: geographic distribution and level of novelty of Puerto Rican forests. In: Hobbs RJ, Higgs ES, Hall C (eds) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Chichester, pp 81–88CrossRefGoogle Scholar
  41. Mascaro J (2011) Eighty years of succession in a noncommercial plantation on Hawai’i Island: are native species returning? 1. Pac Sci 65:1–15. doi: 10.2984/65.1.001 CrossRefGoogle Scholar
  42. Mascaro J, Becklund KK, Hughes RF, Schnitzer SA (2008) Limited native plant regeneration in novel, exotic-dominated forests on Hawai’i. For Ecol Manag 256:593–606. doi: 10.1016/j.foreco.2008.04.053 CrossRefGoogle Scholar
  43. Mascaro J, Hughes RF, Schnitzer SA (2012) Novel forests maintain ecosystem processes after the decline of native tree species. Ecol Monogr 82:221–228. doi: 10.1890/11-1014.1 CrossRefGoogle Scholar
  44. Mauchamp A, Atkinson R (2010) Rapid, recent, and irreversible habitat loss: Scalesia forest on the Galápagos Islands. In: Toral-Granda MV, Cayot L (eds) Galápagos report 2009–2010. Charles Darwin Foundation, Galápagos National Park and Consejo de Gobierno de Galápagos, Puerto Ayora, pp 108–112Google Scholar
  45. McKinney M (2008) Do humans homogenize or differentiate biotas? It depends. J Biogeogr 35:1960–1961. doi: 10.1111/j.1365-2699.2008.02011.x CrossRefGoogle Scholar
  46. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi: 10.1016/S0169-5347(99)01679-1 CrossRefPubMedGoogle Scholar
  47. Miller J, Beltesmeyer B (2016) What’s wrong with novel ecosystems, really? Restor Ecol. doi: 10.1111/rec.12378 Google Scholar
  48. Morse NB, Pellissier PA, Cianciola EN et al (2014) Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol Soc. doi: 10.5751/ES-06192-190212 Google Scholar
  49. Peltzer DA, MacLeod CJ (2014) Weeds and native plant species are negatively associated along grassland and kiwifruit land management intensity gradients. Austral Ecol 39:39–49. doi: 10.1111/aec.12043 CrossRefGoogle Scholar
  50. Rentería JL (2012) Towards an optimal management of the invasive plant Rubus niveus in the Galápagos Islands. Ph.D. dissertation, Imperial College LondonGoogle Scholar
  51. Rentería J, Buddenhagen C (2006) Invasive plants in the Scalesia pedunculata forest at los Gemelos, Santa Cruz, Galápagos. Galápagos Res 64:31–35Google Scholar
  52. Restrepo A, Colinvaux P, Bush M et al (2012) Impacts of climate variability and human colonization on the vegetation of the Galápagos Islands. Ecology 93:1853–1866CrossRefPubMedGoogle Scholar
  53. Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  54. Rivas-Torres G, Adams D (2017) A conceptual framework for the management of a highly-valued invasive tree in the Galápagos Islands. In: Understanding invasive species at different levels: from the molecular to the landscape, Book 6. Springer, New York (in press)Google Scholar
  55. Rivas-Torres G, Rivas M (2017) Novel forests and plant chemical weapons in the Galápagos flora. In: Understanding invasive species at different levels: from the molecular to the landscape, Book 6, Springer, New York (in press)Google Scholar
  56. Snell HL, Tye A, Causton CE, Bensted-Smith R (2002) Current status of and threats to the terrestrial biodiversity of Galápagos. In: Bensted-Smith R (ed) A biodiversity vision for the Galápagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, pp 30–47Google Scholar
  57. Stricker KB, Hagan D, Flory SL (2015) Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research. AoB Plants 7:1–10. doi: 10.1093/aobpla/plv028 CrossRefGoogle Scholar
  58. Trueman M (2014) Towards effective management of modified ecosystems in Galápagos. Ph.D. dissertation, The University of Western AustraliaGoogle Scholar
  59. Trueman M, Standish R, Orellana D, Cabrera W (2014a) Mapping the extent and spread of multiple plant invasions can help prioritise management in Galápagos National Park. NeoBiota 23:1–16. doi: 10.3897/neobiota.23.7800 CrossRefGoogle Scholar
  60. Trueman M, Standish RJ, Hobbs RJ (2014b) Identifying management options for modified vegetation: application of the novel ecosystems framework to a case study in the Galápagos Islands. Biol Conserv 172:37–48. doi: 10.1016/j.biocon.2014.02.005 CrossRefGoogle Scholar
  61. Wiggins IL, Porter DM, Anderson EF (1971) Flora of the Galápagos Islands. Stanford University Press, StanfordGoogle Scholar
  62. Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459. doi: 10.1016/S0169-5347(01)02194-2 CrossRefGoogle Scholar
  63. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. In: Mixed effects models and extensions in ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Colegio de Ciencias Biológicas y Ambientales and Galápagos Academic Institute for the Arts and SciencesUniversidad San Francisco de QuitoQuitoEcuador
  2. 2.Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleUSA
  3. 3.Agronomy DepartmentUniversity of FloridaGainesvilleUSA
  4. 4.Center for Latin American StudiesUniversity of FloridaGainesvilleUSA

Personalised recommendations