Biodiversity and Conservation

, Volume 26, Issue 12, pp 2877–2891 | Cite as

Herpetofaunal responses to anthropogenic forest habitat modification across the neotropics: insights from partitioning β-diversity

  • Ana Filipa Palmeirim
  • Marcus Vinícius Vieira
  • Carlos A. Peres
Original Paper
Part of the following topical collections:
  1. Forest and plantation biodiversity


Habitat change is the primary cause of biodiversity loss worldwide. Large tracks of primary forest can be (1) degraded by human-induced disturbance to the point of total conversion into alternative non-forest land-use types, or (2) reduced into small forest fragments isolated within an anthropogenic matrix. Such disturbed habitats are further prone to be colonized by disturbance-adapted species, which can offset species extinctions therein. Here we investigate amphibian and lizard responses to different degrees of habitat degradation and fragmentation, in terms of both species richness and composition, across the neotropics. We then partitioned the β-diversity into its species replacement and richness-difference components to further examine changes in amphibian and lizard species composition. Based on a comprehensive compilation of 67 studies, we observed increasing rates of amphibian and lizard species loss, particularly along the habitat degradation gradient. There were considerable shifts in species composition for both taxa at human-disturbed sites, which were compounded by species replacements. Novel environmental features of disturbed sites clearly benefited synanthropic generalists at the expense of strict forest habitat specialists. As such, we recommend avoiding the use of species richness as a single metric in evaluating the effects of habitat disturbance on biodiversity. Our findings further highlight the critical importance of retaining large expanses of relatively undisturbed forest within anthropogenic landscapes to prevent pervasive species losses and changes in community structure.


Amphibians Anthropogenic landscapes Biodiversity loss Forest disturbance Lizards Species replacement Tropical forests 



We thank M. Lorini, M. Figueiredo, M. Almeida-Gomes, R. Santos and an anonymous reviewer for their useful comments on the manuscript. AFP was supported by a CAPES PhD scholarship funded by the Brazilian Ministry of Education. Financial support was provided by grants from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). MVV had grants from CNPq (Edital Universal, Produtividade em Pesquisa), and FAPERJ (Cientistas do Nosso Estado).

Supplementary material

10531_2017_1394_MOESM1_ESM.docx (197 kb)
Supplementary material 1 (DOCX 197 kb)


  1. Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon RL, Meave JA, Norden N, Santos BA, Leal IR, Tabarelli M (2013) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev. doi: 10.1111/brv.12231 Google Scholar
  2. Banks-Leite C, Ewers RM, Metzger JP (2012) Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes. Ecology 93:2560–2569CrossRefPubMedGoogle Scholar
  3. Barlow J, Gardner TA, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes J, Hernandez MIM, Hoogmoed MS, Leite RN, Lo-Man-Hung NF, Malcolm JR, Martins MB, Mestre LAM, Miranda-Santos R, Nunes-Gutjahr AL, Overal WL, Parry L, Peters SL, Ribeiro-Junior MA, da Silva MNF, da Silva Motta C, Peres CA (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci 104:18555–18560CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  5. Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777CrossRefPubMedGoogle Scholar
  6. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18:182–188Google Scholar
  7. Bitar YOC, Juen L, Pinheiro LC, Santos-Costa MCD (2015) Anuran beta diversity in a mosaic anthropogenic landscape in transitional Amazon. J Herpetol 49:75–82CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, LondonGoogle Scholar
  9. Carmona RU (2007) Estudo da comunidade de anfíbios e répteis em um fragmento de mata atlântica e em áreas perturbadas no Estado de São Paulo: subsídios para a conservação e manejo de áreas protegidas. Dissertation, University of São PauloGoogle Scholar
  10. Carvalho JC, Cardoso P, Gomes P (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecol Biogeogr 21:760–771CrossRefGoogle Scholar
  11. Carvalho JC, Cardoso P, Borges PA, Schmera D, Podani J (2013) Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 12:825–834CrossRefGoogle Scholar
  12. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514CrossRefGoogle Scholar
  13. Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30Google Scholar
  14. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167CrossRefGoogle Scholar
  15. Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Legendre P, Wagner HH (2016) Package ‘adespatial’: multivariate multiscale spatial analysis. Accessed 20 June 2016
  16. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142CrossRefPubMedGoogle Scholar
  17. Ewers RM, Boyle MJW, Gleave RA, Plowman NS, Benedick S, Bernard H, Bishop TR, Bakhtiar EY, Chey VK, Chung AYC, Davies RG, Edwards DP, Eggleton P, Fayle TM, Hardwick SR, Homathevi R, Kitching RL, Khoo MS, Luke SH, March JJ, Reuben N, Pfeifer M, Rao SV, Sharp AC, Snaddon JLM, Stork NE, Matthew J, Struebig MJ, Wear OR, Yusah KM, Turner EC (2015) Logging cuts the functional importance of invertebrates in tropical rainforest. Nat Commun. doi: 10.1038/ncomms7836 Google Scholar
  18. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  19. Fayle TM, Turner EC, Snaddon JK, Chey VK, Chung AYC, Eggleton P, Foster WA (2010) Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl Ecol 11:337–345CrossRefGoogle Scholar
  20. Filgueiras BK, Tabarelli M, Leal IR, Vaz-de-Mello FZ, Peres CA, Iannuzzi L (2016) Spatial replacement of dung beetles in edge-affected habitats: biotic homogenization or divergence in fragmented tropical forest landscapes? Divers Distrib 22:400–409CrossRefGoogle Scholar
  21. Furlani D, Ficetola GF, Colombo G, Ugurlucan M, De Bernardi F (2009) Deforestation and the structure of frog communities in the Humedale Terraba-Sierpe, Costa Rica. Zool Sci 26:197–202CrossRefPubMedGoogle Scholar
  22. Gardner TA, Ribeiro-Júnior MA, Barlow J, Ávila-Pires TCS, Hoogmoed MS, Peres CA (2007a) The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Conserv Biol 21:775–787CrossRefPubMedGoogle Scholar
  23. Gardner TA, Barlow J, Peres CA (2007b) Paradox, presumption and pitfalls in conservation biology: the importance of habitat change for amphibians and reptiles. Biol Conserv 138:166–179CrossRefGoogle Scholar
  24. Gardner TA, Barlow J, Chazdon R, Ewers R, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:1–21Google Scholar
  25. Gascon C, Lovejoy TE, Bierregaard RO Jr, Malcolm JR, Stouffer FC, Vasconcelos HL, Laurance LF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229CrossRefGoogle Scholar
  26. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT (2000) The global decline of reptiles, Déjà Vu Amphibians. Bioscience 50:653–666CrossRefGoogle Scholar
  27. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi VS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–481CrossRefPubMedGoogle Scholar
  28. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  29. Hanski I, Zurita GA, Bellocq MI, Rybickid J (2013) Species–fragmented area relationship. Proc Natl Acad Sci 110:12715–12720CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hardwick SR, Toumi R, Pfeifer M, Turner EC, Nilus R, Ewers RM (2015) The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric For Meteorol 201:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hillers A, Veith M, Rödel MO (2008) Effects of forest fragmentation and habitat degradation on West African leaflitter frogs. Conserv Biol 22:762–772CrossRefPubMedGoogle Scholar
  32. Isbell F, Tilman D, Polasky S, Loreau M (2015) The biodiversity-dependent ecosystem service debt. Ecol Lett 18:119–134CrossRefPubMedGoogle Scholar
  33. IUCN (2015) The IUCN red list of threatened species. Version 2015-4. Accessed 20 June 2016
  34. Jenkins RKB, Tognelli MT, Bowles P, Cox N, Brown JL, Chan L, Andreone F, Andriamazava A, Andriantsimanarilafy RR, Anjeriniaina M et al (2014) Extinction risks and the conservation of Madagascar’s reptiles. PLoS ONE. doi: 10.1371/journal.pone.0100173 Google Scholar
  35. Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869CrossRefPubMedGoogle Scholar
  36. Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55:77–92CrossRefGoogle Scholar
  37. Lehtinen RM, Ramanamanjato JB (2006) Effects of rainforest fragmentation and correlates of local extinction in a herpetofauna from Madagascar. Appl Herpetol 3:95–110CrossRefGoogle Scholar
  38. Lima MG, Gascon C (1999) The conservation value of linear forest remnants in central Amazonia. Biol Conserv 91:241–247CrossRefGoogle Scholar
  39. Lion MB, Garda AA, Fonseca CR (2014) Split distance: a key landscape metric shaping amphibian populations and communities in forest fragments. Divers Distrib 20:1245–1257CrossRefGoogle Scholar
  40. Lion MB, Garda AA, Santana DJ, Fonseca CR (2016) The conservation value of small fragments for Atlantic forest reptiles. Biotropica 48:265–275CrossRefGoogle Scholar
  41. Lososová Z, Chytrý M, Danihelka J, Tichý L, Ricotta C (2016) Biotic homogenization of urban floras by alien species: the role of species turnover and richness differences. J Veg Sci 27:452–459CrossRefGoogle Scholar
  42. MacArthur RH, Wilson EO (1967) The theory of Island biogeography. Princeton University Press, PrincetonGoogle Scholar
  43. Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468CrossRefPubMedGoogle Scholar
  44. Neckel-Oliveira S (2004) Effects of landscape change on clutches of Phyllomedusa tarsius, a neotropical frog. Biol Conserv 118:109–116CrossRefGoogle Scholar
  45. Newbold T, Hudson LN, Phillips HRP, Hill SLL, Contu S, Lysenko I, Blandon A, Butchart SHM, Booth HL, Day J, Palma A, Harrison MLK, Kirkpatrick L, Pynegar E, Robinson A, Simpson J, Mace GM, Scharlemann JPW, Purvis A (2014) A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc R Soc B 281:20141371CrossRefPubMedPubMedCentralGoogle Scholar
  46. Newbold T, Hudson LN, Hill SL, Contu S, Gray CL, Scharlemann JP, Börger L, Phillips HR, Sheil D, Lysenko I, Purvis A (2016) Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39:1–13CrossRefGoogle Scholar
  47. Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Ganade G, Gossner MM, Guadagnin DL, Lorenzen K, Jacobi CM, Weisser WW, Pillar VD (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460CrossRefGoogle Scholar
  48. Palmeirim AF, Vieira MV, Peres CA (submitted) Non-random lizard extinctions in land-bridge Amazonian forest islands after 28 years of isolation. Biol ConservGoogle Scholar
  49. Peres CA, Barlow J, Laurance WF (2006) Detecting anthropogenic disturbance in tropical forests. Trends Ecol Evol 21:227–229CrossRefPubMedGoogle Scholar
  50. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0.
  51. Rönnegård, L, Alam M, Shen X (2010) The hglm package (Version 2.0). Accessed 20 June 2016
  52. Rosenzweig ML (1999) Heeding the warning in biodiversity’s basic law. Science 284:276–277CrossRefGoogle Scholar
  53. Sala OE, Chapin IIIFS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  54. Sambuichi RH, Vidal DB, Piasentin FB, Jardim JG, Viana TG, Menezes AA, Mello DLN, Ahnert D, Baligar VC (2012) Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodivers Conserv 21:1055–1077CrossRefGoogle Scholar
  55. Si X, Baselga A, Leprieur F, Song X, Ding P (2016) Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J Anim Ecol 85:409–418CrossRefPubMedGoogle Scholar
  56. Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173CrossRefGoogle Scholar
  57. Suarez AV, Bolger DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79:2041–2056CrossRefGoogle Scholar
  58. Tocher MD, Gascon C, Meyer J (2001) Community composition and breeding success of Amazonian frogs in continuous forest and matrix habitat aquatic sites. In: Bierregaard RO, Cascon C, Lovejoy TE, Mesquita R (eds) Lessons from Amazonia: the ecology and conservation of a fragmented forest. Yale University Press, Yale, pp 235–247Google Scholar
  59. Vandermeer J, Perfecto I (2006) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277CrossRefGoogle Scholar
  60. Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277CrossRefPubMedGoogle Scholar
  61. Vitt LJ, Caldwell JP (2014) Herpetology: an introductory biology of amphibians and reptiles. Elsevier, NormanGoogle Scholar
  62. Vitt LJ, Ávila-Pires T, Caldwell JP, Oliveira VR (1998) The impact of individual tree harvesting on thermal environments of lizards in Amazonian rain forest. Conserv Biol 12:654–664CrossRefGoogle Scholar
  63. Vitt LJ, Zani PA, Espósito MC (1999) Historical ecology of Amazonian lizards: implications for community ecology. Oikos 87:286–294CrossRefGoogle Scholar
  64. Watling JI, Braga L (2015) Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landsc Ecol 30:1449–1459CrossRefGoogle Scholar
  65. Watling JI, Donnelly MA (2008) Species richness and composition of amphibians and reptiles in a fragmented forest landscape in northeastern Bolivia. Basic Appl Ecol 9:523–532CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratório de Vertebrados, Departamento de EcologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations